首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal-mediated atom transfer radical polymerization(ATRP) is a ‘‘living'/controlled radical polymerization. Recently, there has been widely increasing interest in reducing the high costs of catalyst separation and post-polymerization purification in ATRP. In this work, trolamine was found to significantly enhance the catalytical performance of Cu Br/N,N,N0,N0-tetrakis(2-pyridylmethyl) ethylenediamine(Cu Br/TPEN) and Cu Br/tris[2-(dimethylamino) ethylamine](Cu Br/Me6TREN). With the addition of 25-fold molar amount of trolamine relative to Cu Br, the catalyst loadings of Cu Br/TPEN and Cu Br/Me6 TREN were dramatically reduced from a catalyst-to-initiator ratio of 1 to 0.01 and 0.05,respectively. The polymerizations of methyl acrylate, methyl methacrylate and styrene still showed first-order kinetics in the presence of trolamine and produced poly(methyl acrylate), poly(methyl methacrylate) and polystyrene with molecular weights close to theoretical values and low polydispersities. These results indicate that trolamine is a highly effective and versatile promoter for ATRP and is promising for potential industrial application.  相似文献   

2.
Summary: A highly active and versatile CuBr2/N,N,N′,N′‐tetra[(2‐pyridal)methyl]ethylenediamine (CuBr2/TPEN)‐tertiary amine catalyst system has been developed for atom transfer radical polymerization via activator‐generated‐by‐electron‐transfer (AGET ATRP). The catalyst mediates good control of the AGET ATRPs of methyl acrylate, methyl methacrylate, and styrene at 1 mol‐% catalyst relative to initiator. A mechanism study shows that tertiary amines such as triethylamine reduces the CuBr2/TPEN complex to CuBr/TPEN.

The GPC traces of PSt, PMA, and PMMA prepared by AGET ATRP at 1 mol‐% of catalyst relative to initiator are monomodal and have low polydispersities.  相似文献   


3.
Low concentration limitations of the catalyst and conventional free radical polymerization are investigated in the system of initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of butyl methacrylate (BMA), in which 2,2-azobisisobutyronitrile (AIBN) is used as a reducing agent, pentamethyldiethylenetriamine (PMDETA) as a ligand, copper bromide (CuBr2) as a catalyst and ethyl 2-bromoisobutyrate (EBiB) as an initiator. Results show that conventional radical polymerization happens in the early stage of the ICAR ATRP of BMA when the amounts of AIBN are 3~25 times of the catalyst. And with the increase of the conversion, the BMA polymerization solely conducts the controlled radical polymerization (CRP). The low concentration limitations (based on monomer) of the catalyst required in ICAR ATRP of BMA with good controllability are found to be closely related to the molar ratio of initiator to catalyst, which is determined by the stability of the catalyst/ligand complex. The smaller molar ratio of initiator to catalyst allows lower concentration limitations of the catalyst.  相似文献   

4.
Kinetic modeling is used to better understand and optimize initiators for continuous activator regeneration atom‐transfer radical polymerization (ICAR ATRP). The polymerization conditions are adjusted as a function of the ATRP catalyst reactivity for two monomers, methyl methacrylate and styrene. In order to prepare a well‐controlled ICAR ATRP process with a low catalyst amount (ppm level), a sufficiently low initial concentration of conventional radical initiator relative to the initial ATRP initiator is required. In some cases, stepwise addition of a conventional radical initiator is needed to reach high conversion. Under such conditions, the equilibrium of the activation/deactivation process for macromolecular species can be established already at low conversion.

  相似文献   


5.
Treatment of the ebnpa (N-2-(ethylthio)ethyl-N,N-bis((6-neopentylamino-2-pyridyl)methyl)amine) ligand with a molar equivalent amount of Cd(ClO(4))(2).5H(2)O in CH(3)CN followed by the addition of [Me(4)N]OH.5H(2)O yielded the cadmium hydroxide complex [(ebnpaCd)(2)(mu-OH)(2)](ClO(4))(2) (1). Complex 1 has a binuclear cation in the solid-state with secondary hydrogen-bonding and CH/pi interactions involving the ebnpa ligand. In acetonitrile, 1 forms a binuclear/mononuclear equilibrium mixture. The formation of a mononuclear species has been confirmed by conductance measurements of 1 at low concentrations. Variable temperature studies of the binuclear/mononuclear equilibrium provided the standard enthalpy and entropy associated with the formation of the monomer as DeltaH degrees = +31(2) kJ mol(-1) and DeltaS degrees = +108(8) J mol(-1) K(-1), respectively. Enhanced secondary hydrogen-bonding interactions involving the terminal Cd-OH moiety may help to stabilize the mononuclear complex. Treatment of 1 with CO(2) in acetonitrile results in the formation of a binuclear cadmium carbonate complex, [(ebnpaCd)(2)(mu-CO(3))](ClO(4))(2) (2).  相似文献   

6.
综述了原子转移自由基聚合 (ATRP)中 ,以N ,N 二乙基硫代氨基甲酰硫基团 (S2 CNEt2 )转移实现活性聚合、控制聚合物结构的 4种新方法 :非卤化物 ,N ,N 二乙基二硫代氨基甲酸亚铜 [Cu(S2 CNEt2 ) ]催化甲基丙烯酸甲酯 (MMA)的正向ATRP ;2 ,2′ 联吡啶存在的条件下 ,过氧化苯甲酰 (BPO)与Cu(S2 CNEt2 )的氧化还原反应控制MMA的本体反向ATRP;同时含可转移卤原子、基团的氯化二乙基二硫代氨基甲酸铜 [Cu(S2 CNEt2 ) Cl]成功地用于偶氮二异丁腈或BPO引发的乙烯类单体反向ATRP.假卤原子S2 CNEt2 转移的ATRP得到窄分布的精确结构聚合物分子链ω 端含有光敏基团S2 CNEt2 ,可引发乙烯类单体的常温光聚合 ,实现ATRP与光聚合相结合制备嵌段共聚物  相似文献   

7.
原子转移自由基聚合合成耐热性共聚物   总被引:3,自引:0,他引:3  
自 1 995年第一篇有关过渡金属催化的原子转移自由基聚合 (ATRP)论文发表以来 ,国内外许多研究者都纷纷开展这方面的工作 ,人们已用该法合成了各类指定结构的聚合物[1~ 6] ,选用合适的引发剂比较容易合成出具有良好加工流动性的星型和超支化聚合物[2 ,3,6] .N 取代马来酰亚胺由于其环状结构而被广泛用于自由基共聚合制备耐热性聚合物[7~ 9] ,但N 取代马来酰亚胺的引入将降低聚合物的加工流动性 ,若能实现含N 取代马来酰亚胺单体结构的可控ATRP共聚合 ,利用多官能团引发剂如四溴甲基苯合成出星型耐热性共聚物 ,将可望同时改善聚…  相似文献   

8.
A hybrid polymerization system that combines the fast reaction kinetics of conventional free radical polymerization and the control of molecular weight and distribution afforded by ATRP has been developed. High‐free radical initiator concentrations in the range of 0.1–0.2 M were used in combination with a low concentration of ATRP catalyst. Conversions higher than 90% were achieved with ATRP catalyst concentrations of less than 20 ppm within 2 h for the hybrid ATRP system as compared with ATRPs where achieving such conversions would take up to 24 h. These reaction conditions lead to living polymerizations where polymer molecular weight increases linearly with monomer conversion. As in living polymerization and despite the fast rates and low ATRP catalyst concentrations, the polydispersity of the produced polymer remained below 1.30. Chain extension experiments from a synthesized macroinitiator were successful, which demonstrate the living characteristics of the hybrid ATRP process. Catalyst concentrations as low as 16 ppm were found to effectively mediate the growth of over 100 polymer chains per catalytic center, whereas at the same time negating the need for post polymerization purification given the low‐catalyst concentration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2294–2301, 2010  相似文献   

9.
An unsymmetrical N-heterocyclic carbene, namely 1-isopropyl-3-benzylimidazol-2-ylidene, is a highly active catalyst for ring-opening polymerization of ?-caprolactone (CL) to give polycaprolactone (PCL) with number average molecular weight (Mn) as high as 2.66 × 104 at 0°C in 100 min in tetrahydrofuran (THF). The effects of monomer/initiator molar ratio ([M]/[I]), catalyst/initiator molar ratio ([C]/[I]), monomer concentration, as well as polymerization temperature and time have been investigated. The kinetic studies of CL polymerization have indicated that the polymerization rate is first-order with respect to both monomer and catalyst concentrations. The apparent activation energy amounts to 56.04 kJ/mol. The proposed mechanism is a monomer-activated process.  相似文献   

10.
Environmentally friendly iron(II) catalysts for atom‐transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N‐trialkylated‐1,4,9‐triazacyclononane (R3TACN) ligands. Two types of structures were confirmed by crystallography: “[(R3TACN)FeX2]” complexes with relatively small R groups have ionic and dinuclear structures including a [(R3TACN)Fe(μ‐X)3Fe(R3TACN)]+ moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3TACN)FeX2]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3TACN}FeBr2] ( 4 b ) was the best catalyst for the well‐controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined.  相似文献   

11.
通过α-溴丙酰溴与Z5(季戊四醇与2,2-二羟甲基丙酸缩聚的产物)酯化反应制得超支化原子转移自由基聚合(ATRP)引发剂Z5-B(约含19个引发点).在100℃及CuCl/N,N,N,N",N"-五甲基二亚乙基三胺催化下,用Z5-B引发苯乙烯的ATRP聚合(环己酮为溶剂,体积分数为50%),得到超支化的聚苯乙烯,将溴端基叠氮化后与C60反应,获得超支化聚苯乙烯C60衍生物.该超支化C60衍生物可用于光限制材料.  相似文献   

12.
丁伟  王玲  于涛  曲广淼  高翔  李明 《应用化学》2013,30(4):398-402
在微波辐射下,以水为反应介质,2-氯丙酰胺为引发剂,氯化亚铜/2,2′-联吡啶为催化体系,自制的磺基甜菜碱两性离子功能单体3-(2-甲基丙烯酰氧乙基二甲胺基)丙磺酸盐(DMAPS)与丙烯酰胺(AM)单体进行原子转移自由基共聚合反应,得到磺基甜菜碱型两性离子聚合物P(AM-DMAPS)。 讨论了微波功率、反应时间、单体用量、引发剂用量、催化剂和配体用量等因素对聚合反应的影响,并与相应的热聚合法进行了对照。 结果表明,微波辐射功率240 W,反应时间为1250 s时,微波辐射下共聚合的表观速率常数(Kappp)为热聚合法4.5倍,此时AM与DMAPS在水介质中的最佳合成条件为:单体总浓度4 mol/L(其中功能性单体DMAPS在混合单体中所占摩尔分数为1.0%),引发剂浓度0.015 mol/L,催化剂浓度0.01 mol/L。 此时转化率为40.15%,Mn为46410。  相似文献   

13.
CuBr ligated with N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) is a common catalyst for atom transfer radical polymerization (ATRP). A catalyst/initiator ratio of 0.5–1 is generally required for most CuBr/PMDETA-catalyzed polymerizations, leading to high catalyst loading and high cost of post-polymerization purification. In this work, triethanolamine is found to drastically improve the catalytical performance of CuBr/PMDETA and the strong promotion effects of triethanolamine on ATRP of methyl acrylate (MA), methyl methacrylate (MMA) and styrene (St) have been investigated. In the presence of triethanolamine, the catalyst loading of CuBr/PMDETA is substantially reduced from a normal catalyst/initiator ratio of 1 to 0.01, 0.05 and 0.05 respectively in the polymerization of MA, MMA and St. As CuBr/PMDETA is one of the cheapest ATRP catalysts, the combination of CuBr/PMDETA with triethanolamine further markedly decreases the catalyst consumption and reduces the cost of post-purification for ATRP at large scales, and therefore is promising for potential industrial applications.  相似文献   

14.
Abstract

Mechanistic and synthetic aspects of atom transfer radical polymerization (ATRP) are reviewed. This controlled/“living” system polymerizes many monomers including styrenes, (meth)acrylates, acrylonitrile and dienes. The halogen end groups can be converted to other functional groups such as amines and azides. In addition to producing well-defined linear homopolymers, statistical copolymers, block copolymers, and gradient copolymers, ATRP can be used to synthesize graft and hyperbranched copolymers through copolymerization with functionalized monomers. Selection of appropriate conditions for ATRP depends on targeted molecular weight and degree of polymer chain end-functionality and includes considering the monomer(s) to be polymerized, initiator structure/reactivity, amount of catalyst/deactivator used, halogen end-group used, and temperature.  相似文献   

15.
Controlled polymerization of (meth)acrylamides was achieved by ATRP using the initiating system methyl 2‐chloropropionate/CuCl/tris(2‐dimethylaminoethyl)amine. Linear increase of molecular weights with conversion and low polydispersity (Mw/Mn < 1.2) were obtained in toluene, at room temperature, when N,N‐dimethylacrylamide was used as a monomer. However, the polymerization reached limited conversion, which could be enhanced by increasing the catalyst/initiator ratio. The limited conversion is not due to the loss of the active chains, but rather to the loss of activity of the catalytic system.  相似文献   

16.
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004  相似文献   

17.
With the recent development of new initiation techniques in atom transfer radical polymerization (ATRP) that allow catalysts to be employed at unprecedented low concentrations (∼10 ppm), a thorough understanding of competitive equilibria that can affect catalyst performance is becoming increasingly important. Such mechanistic considerations are discussed herein, including i) factors affecting the position of the ATRP equilibrium; ii) dissociation of the ATRP catalyst at high dilution and loss of deactivator due to halide dissociation; iii) conditional stability constants as related to competitive monomer, solvent, and reducing agent complexation as well as ligand selection with respect to protonation in acidic media; and iv) competitive equilibria involving electron transfer reactions, including the radical oxidation to carbocations or reduction to carbanions, radical coordination to the metal catalyst, and disproportionation of the CuI-based ATRP activator.  相似文献   

18.
The synthesis of diblock copolymer of tert butyl acrylate and methyl methacrylate (PTBA‐b‐PMMA) was prepared by Atom Transfer Radical Polymerization (ATRP). At the outset, macroinitiator of tert butyl acrylate (TBA) was prepared by using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) ligand, Cuprous Bromide (CuBr) catalyst, and ethyl 2‐bromo isobutyrate (2‐EiBBr) initiator. Immediately after the intake of the utmost TBA in the macroinitiator, the second monomer, methyl methacrylate (MMA) was added to the reaction medium, for further polymerization. In these experiments the compositions of the monomers were varied, although the concentrations of ligand, catalyst and the initiator were kept constant. Subsequently, the diblock copolymers were hydrolyzed, under acidic conditions, using HCl catalyst, to obtain an amphiphilic copolymer. These block copolymers were characterized by NMR, IR, GPC, and DSC techniques. These copolymers will be used in, powder coatings, pigment dispersions, and as compatibilizers in polymer blends.  相似文献   

19.
Summary: Controlled copolymerization of polar (meth)acrylates with non-polar olefin monomers (1-octene, norbornene, vinylcyclohexane) was studied by ARGET (activators regenerated by electron transfer) ATRP (atom transfer radical polymerization). When a normal ATRP of n-butyl acrylate (nBA) and 1-octene was conducted, the polymerization resulted in relatively low conversion, limited control over the polymerization process and high polydispersity (PDI > 1.6). This was due to formation of a dormant species, by reaction of 1-octene radicals with Cu(II) deactivator, that could not be reactivated. However, in ARGET ATRP with 10 ppm amounts of Cu-based catalyst, higher yields and a better controlled copolymerization was obtained (PDI < 1.4), because the low concentration of Cu(II) deactivator reduced the formation of the non-reactive dormant species. The influence of the amount of Cu catalyst, ligand structure, initiators with different halogens, the reaction temperature, and monomer feed ratio were also investigated for ARGET ATRP. In copolymerization of (meth)acrylates with non-polar alkenes, the level of control and the total conversion in ARGET ATRP were higher than those for normal ATRP.  相似文献   

20.
Abstract

Two new methacryloyl ureas, 1-(2-methylacryloyl)-3-(2,2,6,6-tetra-methylpiperidin-4-yl)-urea and 1-butyl-3-(2-methylacryloyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-urea (monomer I and monomer II), were prepared by the addition reaction of 2-methylacryloyl iso-cyanate with 2,2,6,6-tetramethylpiperidin-4-yl-amine or butyl-(2,2,6,6-tetramethylpiperidin-4-yl)-amine in a molar ratio of 1:1 at low or room temperature. In a similar way, the syntheses of two new methacryloyl carbamates, 1-(2,2,6,6-tetra-methylpiperidin-4-yl)-3-(2-methylacryloyl)-carbamate and l-(1,2,2,6,6-pentamethyl-piperidin-4-yl)-3-(2-methylacryloyl)-carbamate (monomer III and monomer IV), were completed by the reaction of 2,2,6,6-tetra-methylpiperidin-4-ol or 1,2,2,6,6-pentamethylpiperidin-4-ol with 2-methylacryloyl isocyanate in the presence of dibutyltin dilaurate as catalyst at 60°C. The four new monomers were homopolymerized, and copolymerized with styrene by AIBN as initiator at 70°C. The structures of the new monomers and their polymers were characterized by FT-IR and NMR spectroscopy and by GPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号