首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dramatic enhancement in fluorescence intensity from 1,1'-bi-2-naphthol (BINOL) to dendritic phenyleneethynylenes containing the BINOL core was observed. The strong fluorescence of the dendrimers allows a very small amount of the chiral materials to be used for sensing. The light harvesting antennas of the dendrimer funnel energy to the center BINOL unit, whose hydroxyl groups upon interaction with a quencher molecule lead to fluorescence quenching. This mechanism makes the dendrimers have much more sensitive fluorescence responses than corresponding small molecule sensors. The fluorescence of these dendrimers can be enantioselectively quenched by chiral amino alcohols. It is observed that the fluorescence lifetime of the generation two dendrimer does not change in the presence of various concentrations of 2-amino-3-phenyl-1-propanol. This demonstrates that the fluorescence quenching is entirely due to static quenching. Thus, formation of nonfluorescent ground-state hydrogen-bond complexes between the dendrimers and amino alcohols is proposed to account for the fluorescent quenching. A linear relationship has been established between the Stern-V?lmer constant of the generation two dendrimer and the enantiomeric composition of 2-amino-3-phenyl-1-propanol. Such enantioselective fluorescent sensors may allow a rapid determination of the enantiomeric composition of chiral molecules and are potentially useful in the combinatorial search of asymmetric catalysts and reagents.  相似文献   

2.
不对称催化是有机化学研究的前沿领域和发展方向.近10年来,手性配体的研究得到了长足的发展,大量的小分子手性配体被报道,其中许多手性配体展示了优异的催化性能.但是由于昂贵的手性配体(金属催化剂)分离、回收和再利用的问题,从而限制了小分子催化剂的应用.因此,解决手性金属催化剂的分离与回收问题是不对称催化研究领域的一个热点问题.为了解决这一关键问题,国内外科学家从负载的角度出发已经成功地发展了众多的研究方法,无机负载法、交联高分子负载法、可溶性高分子负载法、树状大分子负载法等.许多负载的手性金属催化剂已经表现出优异的催化活性和高的对映选择活性.  相似文献   

3.
As sensors with multiple chiral centers, salalen 1 and salan 2 composed of trans-cyclohexane-1,2-diamine (trans-DACH) and 1,1'-bi-2-naphthol (BINOL) units were designed and synthesized. Fluorescent recognition studies of resulting sensors towards mandelic acid (MA) reveal that salan 2a containing (R)-BINOL and (R,R)-DACH exhibits highly sensitive and enantioselective response towards MA. The relationship between the chirality combination and the enantioselectivity is discussed. Based on the studies of concentration and solvent effect on the recognition process of 2a, it was found that the sensitivity and enantioselectivity could be enhanced via changing the concentration of sensors or altering the polarity of solvents. To explain why higher enantioselectivity can be achieved in moderate polar solvent other than in nonpolar or polar solvent, a solvent-guest competition mechanism, which may shed a light on the enhancement of the enantioselectivity of chiral recognition and noncovalent asymmetric catalysis, has been proposed and validated.  相似文献   

4.
A series of chiral amino alcohols have been prepared from cheap and readily available (S)-1-phenylethylamine through a one-step transformation. The ability of these newly developed amino alcohols as chiral ligands was evaluated in the Ru-catalyzed asymmetric transfer hydrogenation of aromatic alkyl ketones, providing chiral secondary alcohols with good to excellent conversions (71-100%) and moderate to good enantioselectivities (67-95% ee). The results also showed that the structure of these amino alcohols has a significant influence on the conversion and enantioselectivity.  相似文献   

5.
Chiral BINOL was covalently anchored on two different pore sized mesoporous silica (SBA-15 (7.5 nm) and MCF (14 nm)). These heterogenized ligands were used in Ti-catalyzed asymmetric addition of diethylzinc to aldehydes. High catalytic activity with excellent enantioselectivity (up to 94% ee) for secondary alcohols was achieved using MCF supported chiral BINOL under heterogeneous reaction conditions. Good to excellent enantioselectivity (ee, 68–91%) was also achieved with various small to bulkier aldehydes. The MCF supported catalyst was reused in multiple catalytic runs without loss of enantioselectivity.  相似文献   

6.
《Tetrahedron: Asymmetry》2001,12(11):1559-1565
Novel dendritic chiral BINOL ligands have been synthesized through coupling of MOM-protected 3,3′-dihydroxymethyl-binaphthol with Fréchet-type polyether benzyl bromide dendrons followed by deprotection of the MOM groups using TsOH. These dendritic chiral BINOL ligands were found to be effective in the enantioselective addition of diethylzinc to benzaldehyde both in the presence and absence of Ti(O-iso-Pr)4. The enantioselectivity decreased with increasing generation in both cases. In the latter case, the dendritic chiral BINOL ligands showed much higher catalytic activity and enantioselectivity than BINOL.  相似文献   

7.
The tetrahydroxyl derivative of BINOL, (S)- or (R)-1, and its analogues are synthesized. (S)- or (R)-1 can be used to conduct the enantioselective recognition of chiral amino alcohols. In comparison with BINOL, the two additional hydroxyl groups of (S)- or (R)-1 have increased the binding of this compound with the amino alcohols and significantly improved the fluorescence quenching efficiency. The fluorescence responses of (S)- or (R)-1 toward amino alcohols are compared with those of its analogues (R)-4 and (R)-6. It shows that the interaction of the central naphthyl hydroxyl groups of (S)- or (R)-1 with the substrates is responsible for the observed fluorescence quenching, and the two additional alkyl hydroxyl groups increase the quenching efficiency.  相似文献   

8.
Gao G  Moore D  Xie RG  Pu L 《Organic letters》2002,4(23):4143-4146
The readily available and inexpensive BINOL in combination with Ti(O(i)Pr)(4) is found to catalyze the reaction of an alkynylzinc reagent with various types of aldehydes including aliphatic aldehydes, aromatic aldehydes, and other alpha,beta-unsaturated aldehydes to generate chiral propargyl alcohols with 91-99% ee at room temperature. No previous chiral catalysts have exhibited such a broad scope of enantioselectivity with respect to the type of aldehydes for this reaction. [reaction: see text]  相似文献   

9.
A highly efficient kinetic resolution of racemic amino alcohols has been achieved for the first time with a chiral tin catalyst. A chiral organotin compound with 3,4,5‐trifluorophenyl groups at the 3,3′‐positions of the binaphthyl framework enabled this transformation with excellent yield and high enantioselectivity. The process tolerates aryl‐ and alkyl‐substituted amino alcohols and a variety of other substrates, affording the corresponding products in high enantioselectivity and with s factors up to >500.  相似文献   

10.
A new chiral fluorescent BINOL boronic acid 1 has been synthesized. The chiral recognition properties of 1 are drastically different from BINOL boronic acid c. Sensor 1 shows improved enantioselectivity as well as chemoselectivity toward sugar alcohols, such as d-sorbitol and d-mannitol.The enantioselectivity of sensor 1 toward d-sorbitol (KR/KS) is 1:35 (pH 9.0), and the chemoselectivity for d-sorbitol/d-mannitol is 20:1.  相似文献   

11.
A broad range of aliphatic, aromatic, and heterocyclic boronic acids were successfully homologated using trifluorodiazoethane in the presence of BINOL derivatives to provide the corresponding chiral trifluoromethyl containing boronic acid derivatives in high yields and excellent enantioselectivity. The in situ conversion of the chiral transient boronic acids to the corresponding alcohols or β-CF3 carboxylates are also demonstrated.  相似文献   

12.
Homochiral metal–organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high‐quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF–polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL‐53‐NH2 nanocrystals by post‐synthetic modification with amino acids, such as l ‐histidine (l ‐His) and l ‐glutamic acid (l ‐Glu). The MIL‐53‐NH‐l ‐His and MIL‐53‐NH‐l ‐Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1‐phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large‐scale homochiral MOF‐based MMMs for chiral separation.  相似文献   

13.
A novel chiral 1,5‐N,N‐bidentate ligand based on a spirocyclic pyrrolidine oxazoline backbone was designed and prepared, and it coordinates CuBr in situ to form an unprecedented catalyst that enables efficient oxidative cross‐coupling of 2‐naphthols. Air serves as an external oxidant and generates a series of C1‐symmetric chiral BINOL derivatives with high enantioselectivity (up to 99 % ee) and good yield (up to 87 %). This approach is tolerant of a broader substrates scope, particularly substrates bearing various 3‐ and 3′‐substituents. A preliminary investigation using one of the obtained C1‐symmetric BINOL products was used as an organocatalyst, exhibiting better enantioselectivity than the previously reported organocatalyst, for the asymmetric α‐alkylation of amino esters.  相似文献   

14.
以轴手性的BINOL/H8-BINOL(BINOL为联苯酚)和大位阻的金刚烷酰氯为原料,合成了系列新型手性单齿亚磷酸酯配体,并应用于Cu催化的二乙基锌对环烯酮的不对称1,4.共轭加成反应中.结果表明,配体结构中部分氢化的2,2'-(1,1'-联萘基)亚磷酸酯单元和金刚烷基团,有助于改善反应的对映选择性,对映选择性最高可...  相似文献   

15.
A homochiral porous noninterpenetrating metal-organic framework (MOF), 1, was constructed by linking infinite 1D [Cd(mu-Cl)2]n zigzag chains with axially chiral bipyridine bridging ligands containing orthogonal secondary functional groups. The secondary chiral dihydroxy groups accessible via the large open channels in 1 were utilized to generate a heterogeneous asymmetric catalyst for the addition of diethyzinc to aromatic aldehydes to afford chiral secondary alcohols at up to 93% enantiomeric excess (ee). Control experiments with dendritic aromatic aldehydes of different sizes indicate that the heterogeneous asymmetric catalyst derived from 1 is both highly active and enantioselective as a result of the creation of readily accessible, uniform active catalyst sites inside the porous MOF.  相似文献   

16.
Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   

17.
Five novel chiral ferrocenyl amino alcohols were prepared from natural amino acids and used as catalysts in the asymmetric reduction of prochiral ketones with NaBH4/I2 combination.The incorporation of the ferrocenyl moiety into the molecule of the chiral amino alcohols greatly improved their enantioselectivity in the catalysis.The optically active secondary alcohols were obt5ained in moderate to good enantiomeric excesses and high chemical yields.  相似文献   

18.
报道了树状结构的手性联二萘酚(BINOL)配体的合成及其在二乙基锌对醛的不对称加成反应中的应用.(R)-2,2′-二羟基-1,1′-联萘-3,3′-二羧酸与末端为氨基的Frechet聚芳醚型树状分子经缩合反应,以中等产率得到0~3代的树状分子配体,用1HNMR,IR和MALDI-TOF质谱进行了结构表征.这些树状手性配体与Ti(OPri)4在无水甲苯溶液中形成的配合物是二乙基锌对醛不对称加成反应的高效催化剂,树状分子载体的体积对催化剂的对映选择性没有明显的影响.以邻氯苯甲醛为底物时,反应的对映选择性随树状分子代数的增加而有所提高.  相似文献   

19.
A 1,1′‐bi‐2‐naphthol (BINOL)‐based chiral aldehyde in combination with ZnII shows a highly enantioselective fluorescent response toward functional chiral amines at λ>500 nm. However, the combination of salicylaldehyde and ZnII gives the same fluorescent enhancement for both enantiomers of a functional chiral amine at λ=447 nm. By using the fluorescent responses of the combination of the BINOL‐based chiral aldehyde, salicylaldehyde and ZnII at the two emission wavelengths, both the concentration and enantiomeric composition of functional chiral amines such as amino alcohols, diamines, and amino acids can be simultaneously determined by a single fluorescent measurement. This work provides a simple and convenient method for chiral assay.  相似文献   

20.
Divalent dipeptides have been introduced as counter ions in aqueous CZE. The dipeptides form ion pairs with amino alcohols in the BGE and facilitate the separation of amino alcohols. High concentrations of dipeptide caused reversed effective mobility for the analytes. The net charge of the dipeptide can be controlled using a buffer or a strong base, and regulates the interaction between the dipeptide and the amino alcohol. A stronger interaction and higher selectivity of amino alcohols was observed when the dipeptides were used as divalent counter ions, than in monovalent or uncharged form. Association constants for ion pairs between divalent dipeptides and amino alcohols can be used to enhance selectivity for amino alcohols in CZE. No chiral separation of amino alcohols was observed when using the dipeptides as ion‐pairing chiral selectors in aqueous BGE, but addition of methanol to the BGE promoted enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号