首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Kabachnik—Fields methylphosphorylation of 1,3-diaminopropan-2-ol affords a mixture of 1,3-diamino-2-hydroxypropane-N,N,N′,N′-tetrakismethylphosphonic acid and its intramolecular cyclic ester. Subsequent heating of this mixture led to the thermal dehydration of the acid with the 1,4,2-oxazaphosphorinane ring closure and the formation of 6-[N,N-bis(dihydroxyphosphorylmethyl)amino]methyl-2-hydroxy-2-oxido-1,4,2-oxazaphosphorinane4-methylphosphonic acid. A predominant chair conformation of the formed six-membered heterocycle was inferred from the data of 2D homonuclear (1H, 1H; J-resolved) and heteronuclear (1H, 13C; HSQC, HMBC) NMR correlation spectra.  相似文献   

2.
N-Metallation of bromoanilines with ethylmagnesium bromide followed by a reaction with trimethylchlorosilane provided N-mono and N-bis(trimethylsilyl)bromoanilines depending on the structure of substrate. The metallation of bissilylated bromoanilines with butyllithium permitted the introduction of a trimethylsilyl substituent in the aromatic ring. Previously unknown 2-bromo-N,N-bis(trimethylsilyl)aniline, 2,6-dibromo-N-trimethylsilylaniline, 2,6-dibromo-N,N-bis(trimethylsilyl)aniline, 2-bromo-6-trimethylsilylaniline, 2-bromo-6-trimethylsilyl-N,N-bis(trimethylsilyl)aniline, 2-bromo-6-trimethylsilyl-N-trimethylsilylaniline, 2,4,6-tribromo-N-trimethylsilylaniline, and 2,4,6-tribromo-N,N-bis(trimethylsilyl)aniline were prepared. The structures of the compounds obtained were established by the chromato-mass spectrometry and 1H, 13C, and 29Si NMR spectroscopy.  相似文献   

3.
The thermodynamic characteristics of complexation between ethylenediamine-N,N'-disuccinic acid (H4Y; EDDA) and Ho3+ ion were determined calorimetrically and potentiometrically at 298.15 K and ionic strengths of 0.1, 0.5, 1.0, and 1.5 (KNO3). The logK, ΔrG, ΔrH, and ΔrS values for the formation of HoY and HOHY complexes were calculated at the studied and zero ionic strength values. The changes in thermodynamic parameters of the reactions are discussed.  相似文献   

4.
The structure of a new cycloartane glycoside isolated from leaves of Astragalus caucasicus Pall. (Leguminosae) was elucidated using chemical transformations and spectral data. Cycloascauloside B is 20R, 25-epoxy-24S-cycloartan-3β,6α,16β,24-tetraol 3-O-[α-L-rhamnopyranosyl-(1å2)]-β-D-glucopyranoside.  相似文献   

5.
N-Substituted 5-nitrosoquinolin-8-amines were synthesized for the first time by amination of 5-nitrosoquinolin-8-ol with primary aliphatic amines. The amination of 5-nitrosoquinolin-8-ol with hexamethylenediamine afforded N1,N6-bis(5-nitrosoquinolin-8-yl)hexane-1,6-diamine. The resulting nitrosoquinolinamines were reduced with hydrazine hydrate over Pd/C to N8-alkylquinoline-5,8-diamines and N1,N6-bis-(5-aminoquinolin-8-yl)hexane-1,6-diamine.  相似文献   

6.
The crystal and molecular structure of the N,N′-bis(2-methoxyethyl)-4,5-bis(2,4,6-trimethylphenyl)- imidazolinium hexafluorophosphate, which is the first example of 1,3- and 4,5-disubstituted imidazolinium salts, have been determined and characterized by X-ray single crystal diffraction technique,1H, 13C, 31P and 19F NMR spectroscopy. The compound, C27H39N2O2 +·PF6 ?, crystallizes in the orthorhombic space group Pba2 with a = 15.8139(4) Å, b = 22.9346(7) Å, c = 8.069(3) Å. Two charge-assisted C–H\(\cdots\)F type crystal packing interactions between the imidazolinium C–H bonds and the F atoms of hexafluorophosphate counteranions build up zigzag chains along a-axis of the unit cell and indicate that the C–H bonds of the imidazolinium ring are also polarized. In addition, the title salt was modeled by DFT calculations in order to verify charge transfer mechanism observed in its imidazolinium ring.  相似文献   

7.
Two novel μ-oxo-di-μ-carboxylato-bridged iron(III) complexes of [Fe2(bpea)2(PhCO2)2(μ-O)] (ClO4)2·C2H5OH (1) and [Fe2(bpma)2(ClCH2COO)2(μ-O)](ClO4)2· H2O (2) (bpea = N,N-bis(2-pyridylmethyl)ethylamine, bpma = N,N-bis(2-pyridylmethyl)methylamine), have been synthesized and determined by X-ray diffraction. Complex (1) crystallizes in the Orthorhombic space group P nma with d(Fe···Fe) of 3.094 Å and average d(Fe–Obbridge) of 1.805 Å; Complex (2) crystallizes in the Monoclinic space group C 2/c, with d(Fe···Fe) of 3.109 Å and average d(Fe–Obbridge) of 1.794 Å. The magnetic studies indicate a stronger antiferromagnetic interaction between iron(III) ions through μ-oxo-di-μ-carboxylato-bridge for complex (1), with J = ? 141.6 cm?1.  相似文献   

8.
N 1,N 1,N 2,N 2-tetramethylethane-1,2-diamine-based ionic salts (TMEDA), N 1,N 1,N 1,N 2,N 2,N 2-hexamethylethane-1,2-diaminium dicyanamide (HMEDA-(DCA)2) were prepared following the quaternization and subsequent ion exchange. The chemical structure of the HMEDA-(DCA)2 was confirmed using 13C NMR spectrum and elemental analysis. The corresponding viscosity of its 60 wt% solution was found to be lower than 5 cP at room temperature, which was critical for propellant application. The ignition delay of 40 wt% HMEDA-(DCA)2 solution was decreased to 20–30 ms dramatically using alkali metal salts, Li(CH3COO), Mg(CH3COO)2, and Ca(CH3COO)2 as a co-catalyst when white fume nitric acid was utilized as an oxidizer.  相似文献   

9.
Nitration of N,N′-bis(trimethylsilyl)carbodiimide with N2O5 or (NO2)2SiF6 afforded N-nitro-N´-(trimethylsilyl)carbodiimide, the first representative of N-nitro carbodiimides. Its further nitration led to the release of CO2, which is presumably formed in the course of N,N´-dinitrocarbodiimide decomposition. The reactions of N-nitro-N´-(trimethylsilyl)carbodiimide with nucleophiles take place both at the tri methylsilyl group (for example, with NH3) to give nitrocyanamide salts and at the carbodiimide C atom (for example, with Et2NH) to give the corresponding nitroguan idines.  相似文献   

10.
Alkylsulfanylchloroacetylenes react with 1,1-dimethylhydrazine in diethyl ether at 20–22°C to give, depending on the reactant ratio, 3,6-bis(alkylsulfanylmethyl)-1,1,4,4-tetramethyl-1,4-dihydro-1,2,4,5- tetrazine-1,4-diium dichlorides (yield 67–80%) or 1-[2-(alkylsulfanyl)-1-(2,2-dimethylhydrazono)ethyl]-1,1-dimethylhydrazinium chlorides. The latter readily undergo dequaternization to the corresponding 2-alkylsulfanyl-N 1,N 2,N 4-trimethylethanohydrazide hydrazones (yield up to 53%).  相似文献   

11.
An efficient method has been developed for the synthesis of 7,16,25-triaryl-7,8,16,17,25,26-hexahydro-6H,15H,24H-tribenzo[f,m,t][1,5,8,12,15,19,3,10,17]hexaoxatriazacyclohenicosines, 3,8-diaryl-2,3,4,7,8,9-hexahydrobenzo[1,2-e:4,3-e′]bis[1,3]oxazines, 3,9-bis(chlorophenyl)-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-e:3,4-e′]bis[1,3]oxazines, and 2,9-bis(chlorophenyl)-1,2,3,8,9,10-hexahydrobenzo[1,2-e:6,5-e′]bis-[1,3]oxazines via cycloaminomethylation of pyrocatechol, resorcinol, and hydroquinone with N,N-bis(methoxymethyl) anilines in the presence of samarium catalysts.  相似文献   

12.
Reactions of trifluoroacetamide with (1E,3E)-1,4-diphenylbuta-1,3-diene and 1,1,4,4-tetraphenylbuta-1,3-diene in the oxidative system t-BuOCl–NaI have been studied. The reaction with (1E,3E)-1,4-diphenylbuta-1,3-diene afforded three products, N,N′-(phenylmethylene)bis(trifluoroacetamide), 3-chloro-4-iodo- 2,5-diphenyl-1-(trifluoroacetyl)pyrrolidine, and trifluoro-N-[(3E)-2-hydroxy-1,4-diphenylbut-3-en-1-yl]acetamide, with a high overall yield. 1,1,4,4-Tetraphenylbuta-1,3-diene failed to react with trifluoroacetamide.  相似文献   

13.
Reactions of acetamide and benzamide with N-allyltrifluoromethanesulfonamide in the presence of t-BuOCl–NaI afforded exclusively 2,5-bis(chloromethyl)-1,4-bis(trifluoromethanesulfonyl)piperazine. Analogous reaction with N,N-diallyltrifluoromethanesulfonamide gave mixed halogenation product at only one C=C double bond of the substrate.  相似文献   

14.
Hydrogen transfer hydrogenation of acetophenone and methyl benzoylformate with 2-propanol was studied on colloidal systems obtained by reduction of rhodium complexes in the presence of optically active compounds: chiral diamines, quaternary salt (4S,5S)-(–)-N1,N4-dibenzylene-2,3-dihydroxy-N1,N1,N4,N4-tetramethylbutane-1,4-diammonium dichloride and (8S,9R)-(–)-cinchonidine. The increase in the molar ratio modifier/Rh leads to the increase in the enantioneric excess (ee) of the reaction products. The largest ee [43.8% of (R)-1-phenylethanol and 58.2% of methyl ester of (R)-mandelic acid] were achieved for the ratios (8S,9R)-(–)-cinchonadine: Rh = 9: 1 and 3: 1, respectively. The catalyst was characterized by the high-resolution transmission electron microscopy, X-ray diffraction analysis, and thermal analysis.  相似文献   

15.
Two benzodiazepine derivatives, C23H22N2O (I), 2-methyl-8-methoxy-2,4-diphenyl-2,3-dihydro-1H-1,5-benzodiazepine, and C22H17N3O2Br2 (II), 2-methyl-7-nitro-2,4-bis(4′-bromophenyl)-2,3-dihydro-1H-1,5-benzodiazepine, were studied by single crystal X-ray diffraction method. Compound (I) crystallizes in the monoclinic system, space group P21/c, a = 13.1703(17) Å, b = 11.1990(14) Å, c = 12.9093(16) Å, β = 107.831(2)°, V = 1812.6(3) Å3, Z = 4. Compound (II) crystallizes in the monoclinic system, space group P21/n, a = 11.7345(12) Å, b = 12.7477(13) Å, c = 13.5965(14) Å, β = 95.221(2)°, V = 2025.4(4) Å3, Z = 4. The molecules of (I) and (II) have T-shape form with the diazepine ring at the junction point. The seven membered central benzodiazepine ring in both structures adopt a twist-boat conformation. The crystal packing is stabilized by C-H…π (in I) and C-H…O (in II) interactions.  相似文献   

16.
The reaction of 1-hydrohexafluoroisobutenyloxytrimethylsilane (2a) with cesium fluoride in diglyme leads to elimination of trimethylfluorosilane to form the 1-hydrohexafluoroisobutenolate anion (3), which is silylated with trialkylchlorosilanes at the oxygen atom. In the presence of bis(trifluoromethyl)ketene N,N,O-trimethylaminoacetal or N-(α,α-difluoroalkyl)-dialkylamines, silane 2a is transformed into 2,2,2’,2’-tetrakis(trifluoromethyl)divinyl ether. The reaction of trifluoroacetic anhydride with N-(1,1,2,2-tetrafluoroethyl)diethylamine affords trifluoroacetyl fluoride in quantitative yield.  相似文献   

17.
By hydrogenation of (20R,22R)-6α,14α,25-trihydroxy-and (20R,22R)-6β,14α,25-trihydroxy-2,3:20,22-bis(isopropylidenedioxy)-5α-cholest-7-enes on a catalyst (Raney nickel) the corresponding (5α,6α)-and (5β,6β)-epimers of previously unknown Δ8,14-6-hydroxy derivatives of ecdysteroids were synthesized.  相似文献   

18.
Lithium and sodium bis(trimethylsilyl)amides react with fluoro-, bromo-, and chlorobenzenes in THF or toluene to give a mixture of N,N-bis(trimethylsilyl)aniline and N,2-bis(trimethylsilyl)aniline. The latter compound is resulted from 1,3-shift of the trimethylsilyl group from nitrogen to ortho-carbon atom of the benzene ring. Effects of the solvent, halogen, and alkali metal nature as well as the reaction conditions on the ratio of isomers were examined. Reaction of iodobenzene with sodium bis(trimethylsilyl)amide in THF produces N,N-bis(trimethylsilyl)aniline and 2-iodo-N,N-bis(trimethylsilyl)aniline, while in toluene a mixture of three products, two indicated above and N,N-bis(trimethylsilyl)benzylamine, was obtained.  相似文献   

19.
New 1,7-bis(trialkoxysilylpropyl)-m-carboranedicarboxamides were synthesized by the reaction of 3-aminopropyltrialkoxysilanes with either m-carboranedicarboxylic acid chloride in the presence of Et3N or m-carboranedicarboxylic acid in the presence of N,N´-carbonyl-diimidazole. The synthesized compounds are colorless liquids soluble in benzene, toluene, tetrahydrofuran, diethyl ether, and chloroform and insoluble in water. Structures of the synthesized compounds were established by IR and NMR spectroscopy and confirmed by elemental analysis. The synthesized compounds are interesting starting materials for produc-tion of heat-resistant silicon carborane polymers and metal-carborane-silicon polymers.  相似文献   

20.
Two Ni(II) adamantane complexes, [Ni(bqad)Cl2] (1) and [Ni(bpad)(dmbp)(H2O)](ClO4)2·CH3OH H2O (2) (bqad = N,N′-bis(2-quinolinylmethyl) amantadine, bpad = N,N′-bis(2-pyridylmethyl)amantadine, dmbp = 5,5′-dimethyl-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, infrared spectroscopy and single crystal X-ray diffraction. The nickel centers in complex 1 have a distorted tetragonal pyramidal geometry, while the coordination polyhedron of 2 can be described as a distorted octahedron. The reaction kinetics for reduction of p-nitrophenol to p-aminophenol catalyzed by these complexes has been investigated by UV–visible spectrophotometry. Complex 1 exhibits a higher turnover frequency of 1.4 min?1 for the reduction of p-nitrophenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号