首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During precipitation and calcination at 200°C nanocrystalline Co3O4 was obtained with average size crystallites of 13 nm and a well developed specific surface area of 44 m2 g?1. A small addition of a structural promoter, e.g. Al2O3, increases the specific surface area of the cobalt oxide (54 m2 g?1) and decreases the average size of crystallites (7 nm). Al2O3 inhibits the reduction process of Co3O4 by hydrogen. Reduction of cobalt oxide with aluminium oxide addition runs by equilibrium state at all the respective temperatures. The apparent activation energy of the recrystallization process of the nanocrystalline cobalt promoted by the aluminium oxide is 85 kJ mol?1. Aluminium oxide improves the thermostability of both cobalt oxide and the cobalt obtained as a result of oxide phase reduction.   相似文献   

2.
Copper-cobalt ferrites with composition Cu1?xCoxFe2O4, where x= 0.2 and 0.8 were prepared by thermal treatment of co-precipitated precursor. The obtained materials were characterized by TG-DSC, XRD, Transmission and Conversion Electron Mössbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic properties of ferrites were tested in methanol decomposition to CO and hydrogen.   相似文献   

3.
Without any surfactant, antiferromagnetic Co3O4 nanoparticles were synthesized successfully for the first time by means of an oxidation-reduction method with cobalt sulfate as starting material, which was oxidized to cobalt salt by NaNO3 after alkalinizing with NaOH. Morphological, structural, spectroscopic and magnetic characterization of the product were done by SEM, TEM, XRD, and VSM, respectively. The average crystallite size (on the base of line profile fitting method), D and σ, is estimated as 30 ± 6 nm. Some anomalous magnetic properties and their enhanced effect have been observed in Co3O4 antiferromagnetic nanocrystallites, including a bias field, coercivity, permanent magnetic moments and an open loop. These phenomena are attributed to the unidirectional anisotropy which is caused by the exchange coupling between AFM and FM layers, the existence of the spin glass like surface spins of Co3O4 nanoparticles due to size effects and surface-area effect.   相似文献   

4.
Nanocomposites of Polyacrylic acid/polyvinylimidazole (PAA/PVI) with grafted and ungrafted iron oxide nanoparticles were prepared by a Reflux method. The Fe3O4 nanoparticles with 10 nm average diameter were synthesized by controlled co-precipitation and silanization of Si-PVI on Fe3O4 was used to obtain the grafted ones. Grafting becomes important at composites of less PVI that cause drastic decreases in AC conductivity. The content of PVI has important effects on the conductivity mechanism of these composites. The effect of grafting and Polyacrylic acid/polyvinylimidazole molar ratio on the conduction mechanism were studied. The conduction mechanism of iron oxide nanocomposites can be adjusted by changing molar ratio of Polyacrylic acid/polyvinylimidazole and grafting of Fe3O4 NPs.   相似文献   

5.
The reduction of H2SO4 to SO2 occurs with a relatively good efficiency only at high temperatures, in the presence of catalysts. Some experimental results, regarding conversion of sulfuric acid (96 wt.%) to sulfur dioxide and oxygen, are reported. The reduction has been performed at 800 ?C 900°C and atmospheric pressure, in a tubular quartz reactor. The following commercial catalysts were tested: Pd/Al2O3 (5 wt.% and 0.5 wt.% Pd), Pt/Al2O3 (0.1 wt.% Pt) and ??-Fe2O3. The fresh and spent catalysts were characterized by X-Ray diffraction and BET method. The highest catalytic activity was determined for 5 wt.% Pd/Al2O3, a conversion of 80% being obtained for 5 hours time on stream, at 9 mL h?1 flow rate of 96 wt.% H2SO4. A conversion of 64% was determined for 0.5 wt.% Pd/Al2O3 and 0.1 wt.% Pt/Al2O3. For ??-Fe2O3, a less expensive catalyst, a conversion of 61% for about 60 hours was obtained.   相似文献   

6.
Microcomposites consisting of TiO2 and ThF4 or UO3 (0.5?C2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of the respective additives. X-ray diffraction study reveals small effect of the latter on TiO2 phase composition and cell parameters and significant influence on the crystallite size and UV/Vis reflectance spectra. The photocatalytic tests in presence of TiO2-ThF4 microcomposites under UV and solar irradiation show a non-monotonic increase of the Malachite Green degradation rate constant with the increase of ThF4-content. No changes in the photocatalytic activity are observed in the presence of UO3 but the latter composites exhibit activity in darkness. The results are compared with previously reported data on the performance of TiO2-ThO2 photocatalyst with the same radioactivity and suggest that both radioactivity and the chemical nature of the dopants are responsible for the photocatalytic performance of TiO2-based composites containing radioactive substances.   相似文献   

7.
A facile and easily controlled route was designed to synthesize nano-structured Fe2O3, CuO, and CuO/Fe2O3 hybrid oxides with different Cu/Fe molar ratios via a hydrothermal procedure. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and field-emission scanning electron microscopy (FE-SEM). The results showed that the morphologies of the samples changed with different Cu/Fe ratios. The electrocatalytic properties of the samples modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution were investigated. The results indicated that CuO/Fe2O3 hybrids with lower Cu/Fe ratio exhibited higher electrocatalytic activity. The photocatalytic performances of the samples for methyl orange degradation with assistance of oxydol under irradiation of visible light were studied. The results revealed that CuO/Fe2O3 hybrids with higher Cu/Fe ratio showed efficient photocatalytic activity.   相似文献   

8.
In the work presented here, the way of obtaining the phase with general formula Co3+1.5xCr2–x(VO4)4 (0 ≤ × < 0.4) is demonstrated. A new phase is detected in CrVO4 - Co3V2O8 that is formed in one of the intersection of the ternary CoO - V2O5 - Cr2O3 system. Monophasic Co3Cr2(VO4)4 (Co3+1.5xCr2−x(VO4)4, where × = 0) was obtained from both a mixture comprising CrVO4 and Co3V2O8 as well as from the mixture of CoV2O6 with CoCr2O4. The Co3+1.5xCr2−x(VO4)4 is isotypic with the those demonstrating the lyonsite-type structure. The temperature of melting for the new compound was established using the DTA methods.   相似文献   

9.
The synthesis of 3-deoxyoripavine (7) was realized as a novel and promising intermediate towards the synthesis of the important class of dopaminergic and/or serotonergic 10-deoxyaporphines and the special pharmacological tool µ opioid antagonist cyprodime. Generally, the preparation of these valuable biologically active compounds was achieved in remarkable yields.   相似文献   

10.
Hydrothermally synthesized Co3O4 microspheres were anchored to graphite oxide (GO) and thermally reduced graphene oxide (rGO) composites at different cobalt weight percentages (1, 10, and 100 wt%). The composite materials served as the active materials in bulk electrodes for two-electrode cell electrochemical capacitors (ECCs). GO/Co3O4–1 exhibited a high energy density of 35 W kg?1 with a specific capacitance (C sp) of 196 F g?1 at a maximum charge density of 1 A g?1. rGO/Co3O4-100 presented high specific power output values of up to 23.41 kW h kg?1 with linear energy density behavior for the charge densities applied between 0.03 and 1 A g?1. The composite materials showed Coulombic efficiencies of 96 and 93 % for GO/Co3O4–1 and rGO/Co3O4–100 respectively. The enhancement of capacitive performance is attributed to the oxygenated groups in the GO ECC and the specific area in the rGO ECC. These results offer an interesting insight into the type of carbonaceous support used for graphene derivative electrode materials in ECCs together with Co3O4 loading to improve capacitance performance in terms of specific energy density and specific power.
Graphical abstract ?
  相似文献   

11.
The excited states of cis-trans formic acid dimer and its monomers have been investigated by time-dependent density functional theory (TDDFT) method. The formation of intermolecular hydrogen bonds O1-H1...O2=C2 and C2-H2...O4=C1 induces bond length lengthening of the groups related to the hydrogen bond, while that of the C2-H2 group is shortened. It is demonstrated that the red-shift hydrogen bond O1-H1...O2=C2 and blue-shift hydrogen bond C2-H2...O4=C1 are both weakened when excited to the S1 state. Moreover, it is found that the groups related to the formation of red-shift hydrogen bond O1-H1...O2=C2 are both strengthened in the S1 state, while the groups related to the blue-shift hydrogen bond C2-H2...O4=C1 are both weakened. This will provide information for the photochemistry and photophysical study of red- and blue-shift hydrogen bond.   相似文献   

12.
Formation of a silver selenide layer on silicone coated polyamide cloth was investigated. Fabric samples were selenized in potassium selenotrithionate (K2SeS2O6) solution then treated with AgNO3 solution. Formation of a silver selenide particle layer on the surface was confirmed by a change in appearance, X-ray diffraction, and EDX analysis. XRD revealed two phases: orthorhombic naumannite (Ag2Se) and monoclinic selenium (Se8). SEM showed that the fabric macrostructure and the multifilament yarn microstructure was preserved. The silver selenide particles ranged from 100 nm to more than 20 µm.   相似文献   

13.
The new mixed-valence octanuclear cobalt carboxylate complexes [CoII 4CoIII 44-O)4-(μ3-OMe)4(μ-O2CR)6(O2CR)2(H2O)6]·4H2O, where R = Et (3) or n-Pr (4), were investigated by X-ray diffraction analysis. Complexes 3 and 4 have a molecular octanuclear structure, and they are valence trapped, and contain four cobalt atoms Co3+ in the central cubane fragment with four cobalt atoms Co2+ at the periphery of the molecules. The molecules of the complexes are stabilized by four intramolecular hydrogen bonds and are linked, together with water solvent molecules, by intermolecular hydrogen bonds to form a three-dimensional supramolecular system.  相似文献   

14.
Electrocatalytic oxidation of sulfide ion on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) and a copper (II) complex was investigated. The Cu(II) complex was used due to the reversibility of the Cu(II)/Cu(III) redox couple. The MWCNTs are evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on Cu(II) complex adsorbed on MWCNTs immobilized on the surface of GCE. The modified GCE was applied to the selective amperometric detection of sulfide at a potential of 0.47 V (vs. Ag/AgCl) at pH 8.0. The calibration graph was linear in the concentration range of 5 µM–400 µM; while the limit of detection was 1.2 µM, the sensitivity was 34 nA µM?1. The interference effects of SO3 2?, SO4 2?, S2O3 2?, S4O6 2?, Cysteine, and Cystein were negligible at the concentration ratios more than 40 times. The modified electrode is more stable with time and more easily restorable than unmodified electrode surface. Also, modified electrode permits detection of sulfide ion by its oxidation at lower anodic potentials.   相似文献   

15.
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。  相似文献   

16.
The activity of monometallic Pd, Ru, Ni and Cu catalysts supported on spinel ZnAl2O4 for water gas shift reaction (WGS) was investigated. The physicochemical properties of each catalyst was studied by XRD, TPR, BET and chemisorption methods. The highest activity was obtained for Cu/ZnAl2O4 among the catalysts tested. The activation process carried out in a reducing atmosphere 5%H2-95%Ar in the case of Cu/ZnAl2O4 system lead to the catalytic activity improvement. In the case of copper catalysts, the water gas shift reaction proceeded by the redox surface mechanism between Cu0/Cu+. The PdZn alloy formation after reduction at 350°C was shown.   相似文献   

17.
Nanoparticles of nitrogen-modified TiO2 (N-doped TiO2) calcined at 300°C and 350°C, have been prepared with and without water rinsing. Samples were characterized by x-ray diffractrometry (XRD) and optical spectroscopy. The electron paramagnetic resonance (EPR) spectra from centers involving oxygen vacancies were recorded for all samples. These could be attributed to paramagnetic surface centers of the hole type, for example to paramagnetic oxygen radicals O?, O2 ? etc. The concentration of these centers increased after water rising and it further increased for samples annealed at higher temperature. Additionally, for samples calcined at 300°C, and calcined at 350°C and rinsed, the EPR spectra evidenced the presence of magnetic clusters of Ti3+ ions. The photocatalytic activity of samples was studied towards phenol decomposition under unltraviolet-visible (UV-Vis) irradiation. It was found that, in comparison to the starting materials, the rinsed materials showed increased photocatalytic activity towards phenol oxidation. The light absorption (UV-Vis/DRS) as well as surface Fourier transform infrared/diffuse reflectance spectroscopy (FTIR/DR) studies confirmed a significantly enhanced light absorption and the presence of nitrogen groups on the photocatalysts surfaces, respectively. A significant increase of concentration of paramagnetic centers connected with oxygen vacancies after water rising has had an essential influence on increasing their photocatalytic activity.   相似文献   

18.
The positive, liquid secondary ion (LSI) mass spectra of six cobalt(III) and three chromium(III) (β-diketonates ligand = L?) were examined in a 3-nitrobenzyl alcohol matrix. The complexes of both metals yield clean, matrix-free mass spectra, but there are important differences between them. The cobalt compounds show prominent peaks assignable to the molecular ion, CoL 3 + , of the monomeric chelates, together with abundant dimeric ions, such as Co2L 4 + and Co2L 3 + ; in contrast, chromium complexes show protonated monomers, CrL3H+, in addition to ionized monomers, CrL 3 + , and only minor formation of dimeric ions. The collisionally-activated dissociation (CAD) mass spectrum of Co2L 4 + shows fragmentation to CoL 2 + and Co2L 3 + . That of Co2L 3 + shows fragmentation only to dimeric ions, including Co2L 2 + and, for thienyl or phenyl substituted ligands, to Co2L2Ar+ or Co2LAr+ (Ar = thienyl or phenyl). Neither Co2L 4 + nor Co2L 3 + dissociates to the CoL 3 + ion. The LSI mass spectrum of a mixture of two different cobalt chelates shows dimeric ions containing both types of ligand, which can be explained by ion-molecule reactions in the selvedge region. The differing behaviors of the cobalt and chromium complexes is attributed to the relatively greater stability of the +2 oxidation state for cobalt than for chromium.  相似文献   

19.
Reaction of Na4TCM (1) (H4TCM = tetra[4-(carboxyphenyl)oxamethyl]methane) with [Cu(CHA)](ClO4)2 (2)(CHA = 1,3,6,8,11,14-hexaaz atricyclo[12.2.1.1.8,11] octadecane) in a DMF-water mixture yields [Cu(CHA)]2[TCM] (3). Structural analysis of [Cu(CHA)]2[TCM]·11H2O (3·11H2O) by single crystal X-ray diffraction reveals strong copper-oxygen bonds between two complex cations and the tetraanion leading to a 3D coordination network (zwitterionic structure), consolidated through additional NH...O=C hydrogen bonding within the cation/anion association. The resulting coordination geometry around a copper atom is a distorted square pyramidal with an oxygen atom of the anionic ligand in the apical position. A 3D supramolecular network is developed in the crystal based only on NH...OC hydrogen bonds between the macrocyclic metallic tecton and the carboxylate groups of neighboring 3D coordinated (zwitterionic) moieties. The pseudotetrahedral TCM4? tetraanionic ligand induces a diamondoid architecture formed of large distorted adamantanoid cages.   相似文献   

20.
The rearrangement of easily accessible Cookson’s diketone with chlorosulfonic acid in chloroform followed by the acidic hydrolysis gave 6-chloro-7-hydroxy-dichloropentacyclo[6.3.0.02,6.03,10.05,9]undecane-4-one, whose syn-stereochemistry was assigned through the X-ray crystal structure analysis. This key structure was used for the stereoselective synthesis of the D 3-trishomocubane derivatives as well as for the preparation of potential drugs bearing hydroxy- and amino-functional groups. A new multigram preparative synthesis of D 3-trishomocubane was developed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号