首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of generalized solutions of model nonlinear elliptic systems of second order are studied in the semiball $B_1^ + = B_1 (0) \cap \{ x_n > 0\} \subset $ ? n , with the oblique derivative type boundary condition on $\Gamma _1 = B_1 (0) \cap \{ x_n = 0\} $ . For solutionsuH 1(B 1 + ) of systems of the form $\frac{d}{{dx_\alpha }}a_\alpha ^k (u_x ) = 0, k \leqslant {\rm N}$ , it is proved that the derivatives ux are Hölder in $B_1^ + \cup \Gamma _1 )\backslash \Sigma $ , where Hn?p(σ)=0,p>2. It is shown for continuous solutions u from H1(B1/+) of systems $\frac{d}{{dx_\alpha }}a_\alpha ^k (u,u_x ) = 0$ that the derivatives ux are Hölder on the set $(B_1^ + \cup \Gamma _1 )\backslash \Sigma , dim_\kappa \Sigma \leqslant n - 2$ . Bibliography: 13 titles.  相似文献   

2.
Let p ≡ = 3 (mod 4) be a prime, let ?( $\sqrt p $ ) be the length of the period of the expansion of $\sqrt p $ into a continued fraction, and let h(4p) be the class number of the field ?( $\sqrt p $ ). Our main result is as follows. For p > 91, h(4p)=1 if and only if ?( $\sqrt p $ ) > 0.56 $\sqrt p $ L4p(1), where L4p(1) is the corresponding Dirichlet series. The proof is based on studying linear relations between convergents of the expansion of $\sqrt p $ into a continued fraction. Bibliography: 13 titles.  相似文献   

3.
Berdysheva  E. E. 《Mathematical Notes》2004,76(5-6):620-627
To a function $f \in L_2 [ - \pi ,\pi ]$ and a compact set $Q \subset [ - \pi ,\pi ]$ we assign the supremum $\omega (f,Q) = \sup _{t \in Q} ||f( \cdot + t) - f( \cdot )||_{L_2 [ - \pi ,\pi ]} $ , which is an analog of the modulus of continuity. We denote by $K(n,Q)$ the least constant in Jackson's inequality between the best approximation of the function f by trigonometric polynomials of degree $n - 1$ in the space $L_2 [ - \pi ,\pi ]$ and the modulus of continuity $\omega (f,Q)$ . It follows from results due to Chernykh that $K(n,Q) \geqslant 1/\sqrt 2 $ and $K(n,[0,\pi /\pi ]) = 1/\sqrt 2 $ . On the strength of a result of Yudin, we show that if the measure of the set Q is less than $\pi /n$ , then $K(n,Q) >1/\sqrt 2 $ .  相似文献   

4.
Let $f(x,y,x,w) = x^2 + y^2 + z^2 + Dw^2$ , where $D >1$ is an integer such that $D \ne d^2$ and ${{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}} \right. \kern-0em} {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}$ . Let $rf(n)$ be the number of representations of n by f. It is proved that $r_f (n) = \pi ^2 \frac{n}{{\sqrt D }}\sigma _f (n) + O\left( {\frac{{n^{1 + \varepsilon - c(\theta )} }}{{\sqrt D }}} \right),$ where $\sigma _f (n)$ is the singular series, $c(\theta ) >0$ , and ε is an arbitrarily small positive constant. Bibliography: 14 titles.  相似文献   

5.
Consider a single server queue with i.i.d. arrival and service processes, $\{ A,A_n ,n \geqslant 0\} $ and $\{ C,\;C_n ,n\;\; \geqslant \;\;0\} $ , respectively, and a finite buffer B. The queue content process $\{ Q_n^B ,n \geqslant 0\} $ is recursively defined as $Q_{n + 1}^B = \min ((Q_n^B + A_{n + 1} - C_{n + 1} )^ + ,B),\;\;q^ + = \max (0,q)$ . When $\mathbb{E}(A - C) < 0$ , and A has a subexponential distribution, we show that the stationary expected loss rate for this queue $E(Q_n^B + A_{n + 1} - C_{n + 1} - B)^ + $ has the following explicit asymptotic characterization: $${\mathbb{E}}\left( {Q_n^B + A_{n + 1} - C_{n + 1} - B} \right)^ + ~{\mathbb{E}}\left( {A - B} \right)^ + {as} B \to \infty ,$$ independently of the server process C n . For a fluid queue with capacity c, M/G/∞ arrival process A t , characterized by intermediately regularly varying on periods σon, which arrive with Poisson rate Λ, the average loss rate $\lambda _{{loss}}^B $ satisfies λ loss B ~ Λ E(τonη — B)+ as B → ∞, where $\eta = r + \rho - c,\;\rho \; = \mathbb{E}A_t < \;\;c;r\;\;(c \leqslant r)$ is the rate at which the fluid is arriving during an on period. Accuracy of the above asymptotic relations is verified with extensive numerical and simulation experiments. These explicit formulas have potential application in designing communication networks that will carry traffic with long-tailed characteristics, e.g., Internet data services.  相似文献   

6.
The paper deals with an estimation of the total variation distance between stationary distributions of waiting time in two queueing systems with equal Poisson inputs and different distributions B and $\widetilde B$ of service time. Assuming equality of two first moments of B and $\widetilde B$ the continuity inequalities are derived in terms of difference pseudomoments of B and $\widetilde B$ . When in addition the third moments of B and $\widetilde B$ coincide then the constant involved in the corresponding inequality has the asymptotics ${\text{O}}\left[ {\left( {1 - \rho } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} } \right]$ in the heavy traffic limit $\rho \to 1$ .  相似文献   

7.
Masal'tsev  L. A. 《Mathematical Notes》2004,76(5-6):810-815
We prove that the $2n + 1$ -dimensional Heisenberg group H n and the 4-manifolds $Nil^4 $ and $Nil^3 \times \mathbb{R}$ endowed with an arbitrary left-invariant metric admit no C 3-regular immersions into Euclidean spaces $\mathbb{R}^{2n + 2} $ and $\mathbb{R}^5 $ , respectively.  相似文献   

8.
Let $U \subset L_o ([0,1],\mathcal{M},m)$ be a set of Lebesgue measurable functions. Suppose also that two seminormed spaces of real number sequences are given: $\mathcal{A}$ and $\mathcal{B}$ . We study $\left( {\mathcal{A},\mathcal{B}} \right)$ -sets U defined by the classes $\mathcal{A}$ and $\mathcal{B}$ as follows: $\forall a = (a_n ) \in \mathcal{A}, \forall (f_n (t)) \in u^\mathbb{N} $ (or for sequences similar to $(f_n (t))$ ) $\exists E = E(a) \subset [0,1], mE = 1$ such that $\{ a_n f_n (t)\} 1_E (t)\} \in \mathcal{B}, t \in [0,1]$ . We consider three versions of the definition of $\left( {\mathcal{A},\mathcal{B}} \right)$ -sets, one of which is based on functions independent in the probability sense. The case ${\mathcal{B}}=l_\infty$ is studied in detail. It is shown that $({\mathcal{A}},l_\infty)$ -independent sets are sets bounded or order bounded in some well-known function spaces (L p , L p,q , etc.) constructed with respect to the Lebesgue measure. A characterization of such sets in terms of seminormed spaces of number sequences is given. The (l 1,c °)- and $(\mathcal{A},l_1 )$ -sets were studied by E. M. Nikishin.  相似文献   

9.
10.
Let $W: = \exp \left( { - Q} \right)$ , where $Q$ is of smooth polynomial growth at $\infty$ , for example $Q\left( x \right) = \left| x \right|^\beta ,\beta >1$ . We call $W^2 $ a Freud weight. Let $\left\{ {x_{j{\kern 1pt} n} } \right\}_{j = 1}^n $ and $\left\{ {\lambda _{j{\kern 1pt} n} } \right\}_{j = 1}^n $ denote respectively the zeros of the $n$ th orthonormal polynomial $p_n$ for $W^2 $ and the Christoffel numbers of order $n$ . We establish converse quadrature sum inequalities associated with W, such as $$\left\| {\left( {PW} \right)\left( x \right)\left( {1 + \left| x \right|} \right)^r } \right\|_{L_p \left( R \right)} $$ with $C$ independent of $n$ and polynomials P of degree $ < n$ , and suitable restrictions on $r$ , $R$ . We concentrate on the case ${ \geqq 4}$ , as the case ${p < 4}$ was handled earlier. We are able to treat a general class of Freud weights, whereas our earlier treatment dealt essentially with $\left( { - \left| x \right|^\beta } \right),\beta = 2,4,6,....$ Some applications to Lagrange interpolation are presented.  相似文献   

11.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

12.
13.
In this paper we prove that ifu: ${\mathbb{B}}^n \to {\mathbb{R}}$ , where ${\mathbb{B}}^n $ is the unit ball in ? n , is a monotone function in the Sobolev space Wp ( ${\mathbb{B}}^n $ ), andn ? 1 <pn, thenu has nontangential limits at all the points of $\partial {\mathbb{B}}^n $ except possibly on a set ofp-capacity zero. The key ingredient in the proof is an extension of a classical theorem of Lindelöf to monotone functions in Wp ( ${\mathbb{B}}^n $ ),n ? 1 <pn.  相似文献   

14.
We study the ultrapowers $L_1 (\mu )_\mathfrak{U} $ of aL 1(μ) space, by describing the components of the well-known representation $L_1 (\mu )_\mathfrak{U} = L_1 (\mu _\mathfrak{U} ) \oplus _1 L_1 (\nu _\mathfrak{U} )$ , and we give a representation of the projection from $L_1 (\mu )_\mathfrak{U} $ onto $L_1 (\mu _\mathfrak{U} )$ . Moreover, the subsequence splitting principle forL 1(μ) motivates the following question: if $\mathfrak{V}$ is an ultrafilter on ? and $[f_i ] \in L_1 (\mu )_\mathfrak{V} $ , is it possible to find a weakly convergent sequence (g i ) ?L 1(μ) following $\mathfrak{V}$ and a disjoint sequence (h i ) ?L 1(μ) such that [f i ]=[g i ]+[h i ]? If $\mathfrak{V}$ is a selective ultrafilter, we find a positive answer by showing that $f = [f_i ] \in L_1 (\mu )_\mathfrak{V} $ belongs to $L_1 (\mu _{_\mathfrak{V} } )$ if and only if its representatives {f i } are weakly convergent following $\mathfrak{V}$ and $f \in L_1 (\nu _\mathfrak{V} )$ if and only if it admits a representative consisting of pairwise disjoint functions. As a consequence, we obtain a new proof of the subsequence splitting principle. If $\mathfrak{V}$ is not a p-point then the above characterizations of $L_1 (\nu _{_\mathfrak{V} } )$ and $L_1 (\nu _{_\mathfrak{V} } )$ fail and the answer to the question is negative.  相似文献   

15.
We show that if f: M 3M 3 is an A diffeomorphism with a surface two-dimensional attractor or repeller $\mathcal{B}$ with support $M_\mathcal{B}^2$ , then $\mathcal{B} = M_\mathcal{B}^2$ and there exists a k ≥ 1 such that (1) $M_\mathcal{B}^2$ is the disjoint union M 1 2 ? ? ? M k 2 of tame surfaces such that each surface M i 2 is homeomorphic to the 2-torus T 2; (2) the restriction of f k to M i 2 , i ∈ {1,..., k}, is conjugate to an Anosov diffeomorphism of the torus T 2.  相似文献   

16.
In this paper we determine the method of multi-parameter interpolation and the scales of Lebesgue spaces $B_{\vec p} \left[ {0,2\pi } \right)$ and Besov spaces $B_{\vec p}^{\vec \alpha } \left[ {0,2\pi } \right)$ , which are generalizations of the Lorentz spacesL pq [0, 2π) and Besov spacesB pq α [0, 2π). We also prove imbedding theorems.  相似文献   

17.
This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian inR 3. The asymptotic expansion of the trace of the wave operator $\widehat\mu (t) = \sum\limits_{\upsilon = 1}^\infty {\exp \left( { - it\mu _\upsilon ^{1/2} } \right)} $ for small ?t? and $i = \sqrt { - 1} $ , where $\{ \mu _\nu \} _{\nu = 1}^\infty $ are the eigenvalues of the negative Laplacian $ - \nabla ^2 = - \sum\limits_{k = 1}^3 {\left( {\frac{\partial }{{\partial x^k }}} \right)} ^2 $ in the (x 1,x 2,x 3), is studied for an annular vibrating membrane Ω inR 3 together with its smooth inner boundary surfaceS 1 and its smooth outer boundary surfaceS 2. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth componentsS * i(i=1, …,m) ofS 1 and on the piecewise smooth componentsS * i(i=m+1, …,n) ofS 2 such that $S_1 = \bigcup\limits_{i = 1}^m {S_i^* } $ and $S_2 = \bigcup\limits_{i = m + 1}^n {S_i^* } $ are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane ω from complete knowledge of its eigenvalues by analyzing the asymptotic expansions of the spectral function $\widehat\mu (t)$ for small ?t?.  相似文献   

18.
We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra $\mathcal{A}$ . We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice ${\mathcal{D}\left( \mathcal{A} \right)}$ of all deductive systems on $\mathcal{A}$ . Moreover, relative annihilators of ${C \in \mathcal{D}\left( \mathcal{A} \right)}$ with respect to ${B\;{\text{in}}\;\mathcal{D}\left( \mathcal{A} \right)}$ are introduced and serve as relative pseudocomplements of C w.r.t. B in ${\mathcal{D}\left( \mathcal{A} \right)}$ .  相似文献   

19.
20.
LetD be a simply connected domain, the boundary of which is a closed Jordan curveγ; \(\mathfrak{M} = \left\{ {z_{k, n} } \right\}\) , 0≦kn; n=1, 2, 3, ..., a matrix of interpolation knots, \(\mathfrak{M} \subset \Gamma ; A_c \left( {\bar D} \right)\) the space of the functions that are analytic inD and continuous on \(\bar D; \left\{ {L_n \left( {\mathfrak{M}; f, z} \right)} \right\}\) the sequence of the Lagrange interpolation polynomials. We say that a matrix \(\mathfrak{M}\) satisfies condition (B m ), \(\mathfrak{M}\) ∈(B m ), if for some positive integerm there exist a setB m containingm points and a sequencen p p=1 of integers such that the series \(\mathop \Sigma \limits_{p = 1}^\infty \frac{1}{{n_p }}\) diverges and for all pairsn i ,n j ∈{n p } p=1 the set \(\left( {\bigcap\limits_{k = 0}^{n_i } {z_{k, n_i } } } \right)\bigcap {\left( {\bigcup\limits_{k = 0}^{n_j } {z_{k, n_j } } } \right)} \) is contained inB m . The main result reads as follows. {Let D=z: ¦z¦ \(\Gamma = \partial \bar D\) and let the matrix \(\mathfrak{M} \subset \Gamma \) satisfy condition (Bm). Then there exists a function \(f \in A_c \left( {\bar D} \right)\) such that the relation $$\mathop {\lim \sup }\limits_{n \to \infty } \left| {L_n \left( {\mathfrak{M}, f, z} \right)} \right| = \infty $$ holds almost everywhere on γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号