首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
31P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have been examined to distinguish between the [P(2)Se(6)](4-), [PSe(4)](3-), [P(4)Se(10)](4-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions. There is a general correlation between the chemical shifts (CSs) of anions and the presence of a P[bond]P. The [P(2)Se(6)](4-) and [P(4)Se(10)](4-) anions both contain a P[bond]P and resonate between 25 and 95 ppm whereas the [PSe(4)](3-), [P(2)Se(7)](4-), and [P(2)Se(9)](4-) anions do not contain a P[bond]P and resonate between -115 and -30 ppm. The chemical shift anisotropies (CSAs) of compounds containing [PSe(4)](3-) anions are less than 80 ppm, which is significantly smaller than the CSAs of any of the other anions (range: 135-275 ppm). The smaller CSAs of the [PSe(4)](3-) anion are likely due to the unique local tetrahedral symmetry of this anion. Spin-lattice relaxation times (T(1)) have been determined for the solid compounds and vary between 20 and 3000 s. Unlike the CS, T(1) does not appear to correlate with P-P bonding. (31)P NMR is also shown to be a good method for impurity detection and identification in the solid compounds. The results of this study suggest that (31)P NMR will be a useful tool for anion identification and quantitation in high-temperature melts.  相似文献   

2.
The 2,2,2-crypt salts of the Tl4Se8(4-) and [Tl2Se4(2-)]infinity1 anions have been obtained by extraction of the ternary alloy NaTl0.5Se in ethylenediamine (en) in the presence of 2,2,2-crypt and 18-crown-6 followed by vapor-phase diffusion of THF into the en extract. The [2,2,2-crypt-Na]4[Tl4Se8].en crystallizes in the monoclinic space group P2(1)/n, with Z = 2 and a = 14.768(3) angstroms, b = 16.635(3) angstroms, c = 21.254(4) angstroms, beta = 94.17(3) degrees at -123 degrees C, and the [2,2,2-crypt-Na]2[Tl2Se4]infinity1.en crystallizes in the monoclinic space group P2(1)/c, with Z = 4 and a = 14.246(2) angstroms, b = 14.360(3) angstroms, c = 26.673(8) angstroms, beta = 99.87(3) degrees at -123 degrees C. The TlIII anions, Tl2Se6(6-) and Tl3Se7(5-), and the mixed oxidation state TlI/TlIII anion, Tl3Se6(5-), have been obtained by extraction of NaTl0.5Se and NaTlSe in en, in the presence of 2,2,2-crypt and/or in liquid NH3, and have been characterized in solution by low-temperature 77Se, 203Tl, and 205Tl NMR spectroscopy. The 1J(203,205Tl-77Se) and 2J(203,205Tl-203,205Tl) couplings of the three anions have been used to arrive at their solution structures by detailed analyses and simulations of all spin multiplets that comprise the 205,203Tl NMR subspectra arising from natural abundance 205,203Tl and 77Se isotopomer distributions. The structure of Tl2Se6(6-) is based on a Tl2Se2 ring in which each thallium is bonded to two exo-selenium atoms so that these thalliums are four-coordinate and possess a formal oxidation state of +3. The Tl4Se8(4-) anion is formally derived from the Tl2Se6(6-) anion by coordination of each pair of terminal Se atoms to the TlIII atom of a TlSe+ cation. The structure of the [Tl2Se4(2-)]infinity1 anion is comprised of edge-sharing distorted TlSe4 tetrahedra that form infinite, one-dimensional [Tl2Se42-]infinity1 chains. The structures of Tl3Se6(5-) and Tl3Se7(5-) are derived from Tl4Se4-cubes in which one thallium atom has been removed and two and three exo-selenium atoms are bonded to thallium atoms, respectively, so that each is four-coordinate and possesses a formal oxidation state of +3 with the remaining three-coordinate thallium atom in the +1 oxidation state. Quantum mechanical calculations at the MP2 level of theory show that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions exhibit true minima and display geometries that are in agreement with their experimental structures. Natural bond orbital and electron localization function analyses were utilized in describing the bonding in the present and previously published Tl/Se anions, and showed that the Tl2Se6(6-), Tl3Se6(5-), Tl3Se7(5-), and Tl4Se8(4-) anions are electron-precise rings and cages.  相似文献   

3.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

4.
5.
Reaction of HN(PiPr2)2 with one equivalent of selenium in hexane at room temperature yields the monoselenide as the P-H tautomer Se=PiPr2-N=P(H)iPr2 (2b). Deprotonation of 2b with n butyllithium in the presence of TMEDA at -78 degrees C followed by addition of tellurium produces the air-sensitive, mixed chalcogenido complex [(TMEDA)Li(SePiPr2)(TePiPr2)N] (8Li) in >97% purity after recrystallisation. Similarly, deprotonation of Te=PiPr2-N=P(H)iPr2 (2c), followed by addition of sulfur, gives the sulfur analogue [(TMEDA)Li(SPiPr2)(TePiPr2)N] (7Li) in >99% purity. The symmetrical complexes [(TMEDA)Li(SePiPr2)2N] (4Li) and [(TMEDA)Li(TePiPr2)2N] (5Li) are produced by similar methods. Compounds 2b, 4Li, 5Li, 7Li and 8Li were characterised in solution by multinuclear (1H, 31P, 77Se and 125Te) NMR spectroscopy and their solid-state structures were determined by X-ray crystallography. The X-ray crystal structures of the polymeric chains [NaN(EPiPr2)2]infinity (4Na, E = Se and 5Na, E = Te) are also reported.  相似文献   

6.
The first discrete, selenium-centered tetranuclear zinc cluster [Zn4(mu4-Se)[Se2P(OPr)2]6] was isolated and characterized. The cluster consists of six edge-bridged dsep ligands with four zinc atoms in a slightly distorted tetrahedron and a mu4-Se atom in the center. In addition, 12 mu2-bridging selenium atoms form a Se12 icosahedron. From variable-temperature 31P NMR studies, it was observed that the cluster [Zn4(Se)[Se2P(OPr)2]6] is partly decomposed to [Zn[Se2P(OPr)2]2] and the monomeric species [Zn[Se2P(OPr)2]2] is further in equilibrium with its dimer [Zn[Se2P(OPr)2]2]2.  相似文献   

7.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

8.
Two routes to 1,1-dithiolate complexes cis-[Ru(CO)2(S2X)2] [X = NMe2, OEt, PPh2, P(OEt)2] are presented. From the reaction of NH4S2P(OEt)2 with the ruthenium(II) complex generated upon reduction of RuCl3.3H2O by CO in 2-methoxyethanol, along with the expected mononuclear product, cis-[Ru(CO)22-S2P(OEt)2}2], binuclear [Ru(CO){η2-S2P(OEt)2} {μ,η12-S2P(OEt)2}]2 was also produced. The latter has been crystallographically characterized and shows a trans-arrangement of carbonyls and cis-arrangement of terminal and bridging dithiolate ligands.  相似文献   

9.
A polyhydrido copper nanocluster, [Cu20H11{Se2P(OiPr)2}9] ( 2H ), which exhibits an intrinsically chiral inorganic core of C3 symmetry, was synthesized from achiral [Cu20H11{S2P(OiPr)2}9] ( 1H ) of C3h symmetry by a ligand‐exchange method. The structure has a distorted cuboctahedral Cu13 core, two triangular faces of which are capped along the C3 axis, one by a Cu6 cupola and the other by a single Cu atom. The Cu20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclear NMR spectra of 2H indicate that the chiral Cu20H11 core retains its C3 symmetry in solution. The 11 hydride ligands were located by neutron diffraction experiments and shown to be capping μ3‐H and interstitial μ5‐H ligands (in square‐pyramidal and trigonal‐bipyramidal cavities), as supported by DFT calculations on [Cu20H11(Se2PH2)9] ( 2H′ ) as a simplified model.  相似文献   

10.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

11.
12.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

13.
14.
Calix[2]benzo[4]pyrrole m-6 and p-6, each containing two dipyrromethane moieties and two m-phenylene or p-phenylene units, respectively, were readily synthesised from pyrrole, 1,3- and 1,4-bis(1,1'-dimethylhydroxymethyl)benzene, (m-4 and p-4, respectively) and acetone. Macrocycles m-6 and p-6 were tested as receptors for a selection of anions, such as acetate, dihydrogenphosphate and fluoride. The X-ray structures of m-6 and p-6 and those of the complexes m-6F(-), m-6Cl(-) and m-6CH(3)COO(-) (with an nBu(4)N(+) counterion) were also determined.  相似文献   

15.
The octahedral cluster anion [Re6Se6Br8]2– was prepared by high-temperature synthesis from elementary substances in the presence of KBr. This cluster anion was isolated and structurally characterized by single-crystal X-ray diffraction analysis as the (PPh4)2[Re6Se6Br8] complex (1). Refluxing of polymeric rhenium selenide bromide Re6Se6Br6 in DMF in the presence of Bu4NBr led to the cleavage of the Re—Br—Re bridges to form the complex (Bu4N)2[Re6Se6Br8]. Comparative analysis of the interatomic distances in the octahedral rhenium(iii) selenide bromide clusters was carried out.  相似文献   

16.
The novel halide-centered Ag(I)8 cubic clusters containing diethyl diselenophosphato ligands are prepared and their solid state structures, a discrete unit or a one-dimensional chain, are dictated by the counter anions.  相似文献   

17.
Synthesis and Crystal Structures of (PPh4)2[As2Se4Cl12] and (PPh4)2[As2Se4Br12] The reaction of PPh4Cl and As2Se3 with SOCl2 or with chlorine in dichloromethane affords (PPh4)2[As2Se4Cl12] with good yields. From PPh4Br, As2Se3 and bromine the corresponding bromo compound was obtained. According to the X-ray crystal structure determinations both compounds are isotypic, crystallizing in the space group of P1 . In the anions two Se2X2 molecules are linked with two X? ions forming an Se4X2 ring in chair conformation. Each X?-ion is associated with an additional AsX3 molecule (X = Cl, Br).  相似文献   

18.
Metal selenocarboxylate salts (PPh4)[M(SeC[O]Tol)3] (M = Zn (1), Cd (2) and Hg (3); Tol = C6H4-p-CH3) have been synthesized by reacting Zn(NO3)2 .6H2O, Cd(NO3)2 .4H2O or HgCl2 with (Na+)TolC[O]Se- and PPh4Cl in the ratio of 1 : 4 : 1. The structures of these compounds were determined by single-crystal X-ray diffraction methods. The crystal structures contain discrete cations and anions. In the each anion, the metal center is bound to three TolC[O]Se ligands, primarily through Se, though some long M...O interactions also occur. NMR spectra (113Cd, 199Hg and 77Se, as appropriate) are reported for solutions of [M(SeC[O]Tol)3]-, and of [M(SeC[O]Tol)3](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg), in CH2Cl2 at reduced temperatures. In addition, ESI-MS data have been obtained for [M(SeC[O]Tol)(3)](-) - [M(SC[O]Ph)3]- mixtures (M = Zn-Hg) in acetone and in CH2Cl2. The NMR and ESI-MS studies show that the complexes [M(SeC[O]Tol)n(SC[O]Ph)(3-n)]- (n= 3-0) persist in solution.  相似文献   

19.
The synthesis, structure and properties of Na2Zn(OEt)4(HOEt)5, having the right Na:Zn ratio for sol–gel synthesis of the highly Na-ion conducting ceramic Na1.8Zn0.9Si1.1O4, is described. It was synthesised in high yield by a metathesis reaction of ZnCl2 and 4NaOEt in ethanol or ethanol/toluene solvent. The structure was determined by single-crystal X-ray methods and consists of two symmetry related polymeric strands with the metal sequence ...–Zn–Na–Na–Zn–.... Extensive hydrogen bonding is present within each chain. Further characterization was made with IR- and Raman-spectroscopy and thermo-calorimetry, showing that the compound is stable to 65°C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号