首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two tetrapodal ligands L1 and L2 containing 4,5-diazafluorene units have been synthesized and characterized. Both ligands are composed of two kinds of nonequivalent coordinating sites: one involves the 4-(4,5-diazafluoren-9-ylimino)phenoxy moiety, and the other one involves the 2-(4,5-diazafluoren-9-ylimino)phenoxy moiety. The Ru(II) complexes [(bpy)8Ru4(L1)](PF6)8 and [(bpy)8Ru4(L2)](PF6)8 (bpy = 2,2′-bipyridine) have been obtained by refluxing Ru(bpy)2Cl2·2H2O and each ligand in 2-methoxyethanol. Both complexes exhibit metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm and emission at around 574 nm. Electrochemical studies of both complexes display one Ru(II)-centered oxidation at around 1.33 V and three ligand-centered reductions.  相似文献   

2.
Two novel RuII complexes [Ru(phen)2(PNOPH)]2+ and [Ru(dmp)2 (PNOPH)]2+ (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, PNOPH = 2-(4-nitrophenyl)imidazo-[4,5-f][1,10]phenanthroline) and their deprotoned complexes were synthesized and characterized by ES–MS, 1H - n.m.r, u.v.–vis. and electrochemistry. The crystal structure of the deprotonated complex [Ru(dmp)2 (PNOP)][ClO4] · CH3CN was determined by means of X-ray single crystal diffraction. Nonlinear optical properties of the RuII complexes were investigated by Z-scan techniques in DMF solution, and all of them exhibited both NLO absorption and self-defocusing effect. The corresponding effective NLO susceptibilities |3 | of the complexes are 2.39 × 10-12–5.80 × 10-12 esu.  相似文献   

3.
A series of new star-shaped trinuclear Ru(II) complexes of imidazo[4,5-f][1,10]phenanthroline derivatives, [{Ru(bpy)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (6), [{Ru(phen)(2)}(3){μ-mes(1,4-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (7), [{Ru(bpy)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·4H(2)O (8), and [{Ru(phen)(2)}(3){μ-mes(1,2-phO-Izphen)(3)}](ClO(4))(6)·3H(2)O (9) [mes(1,4-phO-Izphen)(3) (4) = 2,4,6-tri methyl-1,3,5-tris(4-oxymethyl-1-yl(1H-imidazo-2-yl-[4,5-f][1,10]phenanthroline)phenyl)benzene and (mes(1,2-phO-Izphen)(3) (5) = 2,4,6-trimethyl-1,3,5-tris(2-oxymethyl-1-yl(1H-imidazo-2-yl[4,5-f][1,10]phenanthroline)phenyl)benzene] have been synthesized and characterized. Their photophysical and electrochemical properties have also been studied. The core molecule, 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (1) and the trialdehyde intermediate, 2,4,6-trimethyl-1,3,5-tris(4-oxymethyl-1-formylphenyl)benzene (2) are characterized by single crystal X-ray diffraction: triclinic, P1[combining macron]. The complexes 6-9 exhibit Ru(II) metal centered emission at 618, 601, 615, and 605 nm, respectively, in fluid solution at room temperature. The emission profile and emission maxima are similar and independent of the excitation wavelength for each complex. The complexes 6-9 undergo metal centered oxidation and the E(1/2) values for the Ru(II)/Ru(III) redox couples are 1.33, 1.34, 1.35, and 1.35 V versus Ag/Ag(+), respectively, which are cathodically shifted with respect to that of the mononuclear complex [Ru(bpy)(2)(PIP)](2+) (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline). The study demonstrates the versatility of the highly symmetric trinucleating imidazo[4,5-f][1,10]phenanthroline-based core ligands 4 and 5 in forming trinuclear Ru(II) complexes.  相似文献   

4.
5.
The redox properties of a series of [Ru(phen)2(py)X]n+ cations (X = pyridine, NH3, Cl, Br, I, CN, SCN, N3 and NO2) have been investigated in acctonitrile. Two reversible reduction steps are seen at ? 1.35 and ? 1.6 V vs Ag/AgCl; the invariance of these processes with X-group is indicative of electron addition to molecular orbitals mainly of phenanthroline ligand π* origin. Irreversible multi-electron reductions follow below ? 2.20 V. The Ru(II)/Ru(III) couple is seen as a reversible wave near + 0.8 V vs the normal hydrogen electrode, from calibration with ferrocene, except in the cases of the NO2 and SCN complexes, where rapid reactions involving these ligands occur.  相似文献   

6.
Lo KK  Lee TK 《Inorganic chemistry》2004,43(17):5275-5282
Two luminescent ruthenium(II) polypyridine complexes containing a biotin moiety [Ru(bpy)(2)(L1)](PF(6))(2) (1) and [Ru(bpy)(2)(L2)](PF(6))(2) (2) (bpy = 2,2'-bipyridine; L1 = 4-(N-((2-biotinamido)ethyl)amido)-4'-methyl-2,2'-bipyridine; L2 = 4-(N-((6-biotinamido)hexyl)amido)-4'-methyl-2,2'-bipyridine) have been synthesized and characterized, and their photophysical and electrochemical properties have been studied. Upon photoexcitation, complexes 1 and 2 display intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ru) --> pi*(L1 or L2)) emission in fluid solutions at 298 K and in low-temperature glass. We have studied the binding of these ruthenium(II) biotin complexes to avidin by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, competitive assays using native biotin, and quenching experiments using methyl viologen. On the basis of the results of these experiments, a homogeneous competitive assay for biotin has been investigated.  相似文献   

7.
Two polypodands, tetrakis[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]methane (L1) and 1,1,1-tris[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]propane (L2), and their corresponding Ru(II) polypyridyl complexes have been synthesized and characterized. The photophysical behaviors of the two complexes were investigated by UV–vis absorption and emission spectroscopy. They display metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm in MeCN solution at room temperature and emission at around 573 nm in EtOH:MeOH (4:1) glassy matrix at 77 K. Electrochemical studies of the two complexes show one Ru(II)-centered oxidation at around 1.35 V and three ligand-centered reductions.  相似文献   

8.
Summary A series of new complexes [RuL2(pdphen)]2+, where pdphen is the planar ligand pyridino[3,2-f] [1,7]phenanthroline and L = 2,2-bipyridine, phenanthroline, 2,9-dimethylphenanthroline or 5-nitrophenanthroline, were prepared and characterized. The binding of [RuL2-(pdphen)] 2+ to calf thymus DNA was investigated using absorption, fluorescence and circular dichroism (c.d.) spectroscopies. All of the complexes show absorption hypochromicity associated with binding to calf thymus DNA. [Ru(bipy)2pdphen]2+ and [Ru(phen)2pdphen]2+ also show fluorescence intensities and excited state life-time increases. The c.d. spectra of dialyzates from solutions of racemic complexes versus calf thymus DNA indicate enantioselectivity associated with binding to DNA.  相似文献   

9.
Two types of mixed-ligand complexes, i.e. [M(phen)2 (dip)]2+ and [M(phen)(dip)2]2+ (M = iron(II) and nickel(II); phen = 1,10-phenanthroline and dip = 4,7-diphenyl-1,10-phenanthroline) have been prepared from their related tris-complexes, [M(phen)3]2+ by ligand substitution, and isolated by semi-preparative HPLC. Elemental and chromatographic analyses confirm the purity of the isolated complexes while u.v./vis and i.r. spectra were used to identify and characterize them. 1H-n.m.r. and room temperature Mössbauer spectra of the iron(III) complexes were also measured and the results are discussed. In addition, our preliminary results on hypochromicity in the MLCT band and circular dihroism (CD) emerging in the u.v./vis region upon addition of CT(calf thymus)-DNA to the racemic complexes indicated that the iron(II) mixed-ligand complexes interact with CT-DNA.  相似文献   

10.
11.
In order to monitor the progression of the synthesis and the separation of novel mixed-ligand iron complexes containing 1,10-phenanthroline, 1,10-phenanthroline-5,6-dione, and NCS- as ligands all products were mass analyzed by electrospray ionization ion trap MS/MS. The spectra of methanol (MeOH), acetonitrile (ACN), water, and ethanol (EtOH) solutions were collected and the results were compared. It was detected under applied electrospray ionization mass spectrometry (ESI-MS) conditions that MeOH, water, and EtOH formed solvent clusters around the free or complexed 1,10-phenanthroline-5,6-dione. Owing to the solvent-ligand hydrogen-bond formation, the solvent-ligand clusters were formed in the polar protic solvents. The number of protic solvent molecules per complex ion in cluster depended on the number of 1,10-phenanthroline-5,6-dione ligands in the complex ion. Unlike MeOH, EtOH, or water, ACN was not involved in the formation of the solvent clusters with the iron complexes containing 1,10-phenanthroline-5,6-dione as ligand. We also showed that the NCS- group under certain solvent conditions served as a bidentate ligand.  相似文献   

12.
Summary Reactions of ruthenium carbonyl complexes of the type [RuX2(CO)(Ph2RAs)3] (X=Cl or Br; R=Me or Et) with 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen) in alcohol produce orange red cationic products of the formula [RuX(CO)(N-N)(Ph2RAs)2]ClO4 (N-N=bipy or phen). Likewise, the hydridocarbonyls of ruthenium and osmium of the type [MHX(CO)(Ph2RAs)3] (M=Ru or Os) react with bipy and phen to yield yellow cationic complexes of the composition [(MH(CO)(N-N)(Ph2RAs)2]ClO4. Structures have been assigned to all the complexes on the basis of i.r. and1 H n.m.r. spectral data.  相似文献   

13.
[2]Rotaxanes based on the 1,2-bis(pyridinium)ethane subset[24]crown-8 ether motif were prepared that contain a terminal terpyridine group for coordination to a transition-metal ion. These rotaxane ligands were utilized in the preparation of a series of heteroleptic [Ru(terpy)(terpy-rotaxane)]2+ complexes. The compounds were characterized by 1D and 2D 1H NMR spectroscopy, X-ray crystallography, and high-resolution electrospray ionization mass spectrometry. The effect of using a rotaxane as a ligand was probed by UV/Vis/NIR absorption and emission spectroscopy of the Ru(II) complexes. In contrast with the parent [Ru(terpy)(2)]2+ complex, at room temperature the examined complexes exhibit a luminescence band in the near infrared region and a relatively long lived triplet metal-to-ligand charge-transfer (3MLCT) excited state, owing to the presence of strong-electron-acceptor pyridinium substituents on one of the two terpy ligands. Visible-light excitation of the Ru-based chromophore in acetonitrile at room temperature causes an electron transfer to the covalently linked 4,4'-bipyridinium unit and the quenching of the MLCT luminescence. The 3MLCT excited state, however, is not quenched at all in rigid matrix at 77 K. The rotaxane structure was found to affect the absorption and luminescence properties of the complexes. In particular, when a crown ether surrounds the cationic axle, the photoinduced electron-transfer process is slowed down by a factor from 2 to 3. Such features, together with the synthetic and structural advantages offered by [Ru(terpy)2]2+-type complexes compared to, for example, [Ru(bpy)3]2+-type compounds, render these rotaxane-metal complexes promising candidates for the construction of photochemical molecular devices with a wire-type structure.  相似文献   

14.
Jiang  Cai-Wu  Chao  Hui  Li  Run-Hua  Li  Hong  Ji  Liang-Nian 《Transition Metal Chemistry》2002,27(5):520-525
Three RuII complexes [Ru(bpy)2(PIP)]2+, [Ru(PIP)2(bpy)]2+ and [Ru(PIP)3]2+ (PIP = 2-phenylimidazo[4,5-f][1,10]phenanthroline, bpy = 2,2-bipyridine) were prepared and characterized by electrospray mass spectrometry, 1H-n.m.r, u.v.–vis. and electrochemistry. The nonlinear optical properties (NLO) of the RuII complexes were investigated by Z-scan techniques with 12 ns laser pulses at 540 nm, and all of them exhibit both NLO absorption and self-defocusing effects. The corresponding effective NLO susceptibility |3| of the complexes is in the (4.15 – 4.86) × 10–12 e.s.u. range.  相似文献   

15.
The synthesis and characterization of six ruthenium(II) bistridentate polypyridyl complexes is described. These were designed on the basis of a new approach to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. By the use of a bipyridylpyridyl methane ligand in place of terpyridine, the coordination environment of the metal ion becomes nearly octahedral and the rate of deactivation via ligand-field (i.e., metal-centered) states was reduced as shown by temperature-dependent emission lifetime studies. Still, the possibility to make quasi-linear donor-ruthenium-acceptor triads is maintained in the complexes. The most promising complex shows an excited-state lifetime of tau = 15 ns in alcohol solutions at room temperature, which should be compared to a lifetime of tau = 0.25 ns for [Ru(tpy)2]2+. The X-ray structure of the new complex indeed shows a more octahedral geometry than that of [Ru(tpy)2]2+. Most importantly, the high excited-state energy was retained, and thus, so was the potential high reactivity of the excited complex, which has not been the case with previously published strategies based on bistridentate complexes.  相似文献   

16.
Three Ru(II) complexes, namely [Ru(bipy)2PRIP]2+ (1), [Ru(dmb)2PRIP]2+ (2), and [Ru(phen)2PRIP]2+ (3) (dmb = 4,4′-dimethyl-2,2′-bipyridine; PRIP = 2-(pyrrole) imidazo [4,5-f]-1,10-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra, IR, 1H NMR and 13C NMR. The DNA-binding properties of the three complexes with calf-thymus DNA (CT-DNA) were investigated by spectrophotometry, fluorescence methods and viscosity measurements. The results suggest that all three complexes bind to CT-DNA through intercalation. Also, when irradiated at 365 nm, the three complexes promote the photocleavage of plasmid pBR-322 DNA. Under comparable experimental conditions, complex 3 cleaves DNA more effectively than complexes 1 and 2.  相似文献   

17.
The present work reports the synthesis and spectroscopic and electrochemical characterization of homoleptic copper(I) complexes with substituted pirazino [2,3-f]-1,10-phenanthroline, RpplR′, (R = H, Me, COOH or COOMe, and R′ = H, Me) as ligand. The ligand ppl works as an acceptor of electronic density, which is delocalized mainly in the quinoxaline part of its structure. The UV–Vis spectra show that all the complexes display bands in the range 400–650 nm, which are MLCT in character. The λmax and extinction coefficients of the MLCT band at 450 nm and the LC band do not change significatively when varying the R substituent. Nevertheless, the intensity of the shoulder around 500 nm does change; this absorption has been related to either a static or dynamic flattening distortion of the complex D2d → D2 symmetry. The cyclic voltammetry of the complexes shows irreversible redox processes with Ep values that do not follow the tendency expected from the donor/acceptor character of the substituents on the ligand. All the complexes studied showed no emission both in acetonitrile and dichloromethane as solvent at room temperature and under argon atmosphere.  相似文献   

18.
He  Chixian  Yu  Shiwen  Ma  Shuye  Cheng  Feixiang 《Transition Metal Chemistry》2019,44(6):515-524

Three ruthenium(II) polypyridyl complexes with 5-amino-1,10-phenanthroline ligands have been successfully designed and synthesized. They have been fully characterized by ESI-MS, ESI-HRMS, 1H NMR, and elemental analyses. The photophysical and electrochemical properties of the three complexes have been investigated in organic solvent. The geometrical configuration and the electron density distribution in the frontier molecular orbitals of the three complexes have been studied. The three complexes show metal-to-ligand charge transfer (1MLCT) absorption at 445 nm, and intense triplet metal-to-ligand (3MLCT) emission at around 619 nm in fluid solution at 298 K and 580 nm in low-temperature glass. Electrochemical studies of the three complexes are consistent with one RuIII/II reversible couple at around 1.31 V accompanied by three ligand-centered reduction couples.

  相似文献   

19.
Fullerene coordination ligands bearing one bipyridine or terpyridine unit were synthesized, and their coordination to ruthenium(II) formed linear rod-like donor-acceptor systems. Steady-state fluorescence of [Ru(bpy)(2)(bpy-C(60))](2+) showed a rapid solvent-dependent, intramolecular quenching of the ruthenium(II) MLCT excited state. Time-resolved flash photolysis in CH(3)CN revealed characteristic transient absorption changes that have been ascribed to the formation of the C(60) triplet state, suggesting that photoexcitation of [Ru(bpy)(2)(bpy-C(60))](2+) results in a rapid intramolecular transduction of triplet excited state energy. The electrochemical studies on both [Ru(bpy)(2)(bpy-C(60))](2+) and [Ru(tpy)(tpy-C(60))](2+) indicated electronic coupling between the metal center and the fullerene core.  相似文献   

20.
Polypyridyl ruthenium (Ru) complexes 1–3 were prepared. Their photophysical properties were investigated by UV-Vis absorption and luminescence emission spectra. The luminescent lifetimes of these Ruthenium complex were prolonged by more than 5 folds (τ = 2.50 μs for complex 3) when compared with the parent Ru complex 1 (τ = 0.45 μs). We propose that the extended luminescent lifetime of complex 3 is due to the equilibrium between 3MLCT state and the pyrene localized 3π-π* triplet state (3IL). The luminescent O2-sensing property of the complexes in solution and the IMPEK-C polymer film were studied, and the O2 sensing was quantified with the two-site model. The oxygen-sensing property of the Ru complexes can be improved by 104-fold with extension of the luminescent lifetimes. For example, the quenching constant K SV was improved from 0.0023 Torr−1 of 1 to 0.2393 Torr−1 for 3. Our results demonstrated a versatile approach for the preparation of Ru (II) polypyridine complexes with extended luminescent lifetimes as functional materials, for example, for luminescent oxygen-sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号