首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macrocycles L(1)-L(3) incorporating N(2)S(3)-, N(2)S(2)O-, and N(2)S(2)-donor sets, respectively, and containing the 1,10-phenanthroline unit interact in acetonitrile solution with heavy metal ions such as Pb(II), Cd(II), and Hg(II) to give 1:1 ML, 1:2 ML(2), and 2:1 M(2)L complex species, which specifically modulate the photochemical properties of the ligands. The stoichiometry of the complex species formed during spectrofluorometric titrations and their formation constants in MeCN at 25 degrees C were determined from fluorescence vs M(II)/L molar ratio data. The complexes [Pb(L(1))][ClO(4)](2).(1)/(2)H(2)O (1), [Pb(L(2))][ClO(4)](2).MeNO(2) (1a), [Pb(L(3))(2)][ClO(4)](2).2MeCN (1b), and [Cd(L(3))][NO(3)](2) (2b) were also characterized by X-ray diffraction studies. The conformation adopted by L(1)-L(3) in these species reveals the aliphatic portion of the rings folded over the plane containing the heteroaromatic moiety with the ligands trying to encapsulate the metal center within their cavity. In 1, 1a, and 2b the metal ion completes the coordination sphere by interacting with counteranion units and solvent molecules. On the contrary, the 1:2 complex 1b shows Pb(II) sandwiched between two symmetry-related molecules of L(3) reaching an overall [4N + 4S] eight-coordination.  相似文献   

2.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

3.
The reaction of [Ag(MeCN)(4)]ClO(4) with N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylenediamine (dppeda) in CH(2)Cl(2)/MeOH afforded an unexpected cationic binuclear complex [Ag(2)(L(1))(2)(η,η-μ-ClO(4))(2)](ClO(4))(2) (L(1) = N,N'-bis(diphenylphosphanylmethyl)-3H-4,5-dihydroimidazole-1-ium) (1). Compound 1 was also prepared in high yield from reactions of [Ag(MeCN)(4)]ClO(4) with N,N'-bis(diphenylphosphanylmethyl)ethylenediamine (bdppeda) in the presence of formaldehyde (HCHO) or formic acid (HCOOH). Analogous reactions of AgCl with bdppeda and HCHO resulted in the formation a neutral binuclear complex [Ag(2)(L(2))(2)(μ-Cl)(2)] (L(2) = N,N-bis(diphenylphosphanylmethyl)-tetrahydroimidazole) (2). Treatment of 1 with concentrated HCl gave rise to a partially anion-exchanged product [Ag(2)(L(1))(2)(μ-Cl)(2)](ClO(4))(2) (3). Compounds 1 and 3 have a similar cationic binuclear structure, in which a [Ag(2)(η,η-μ-ClO(4))(2)] or [Ag(2)(μ-Cl)(2)] ring is sandwiched by two in situ-formed cationic L(1) ligands. The L(1) ligand may be generated by the Ag(I)-assisted condensation reaction between bdppeda and HCHO or HCOOH. Compound 2 holds a neutral binuclear structure, in which a [Ag(2)(μ-Cl)(2)] ring is connected by two in situ-formed L(2) ligands from its top and bottom sites. The neutral ligand L(2) may be produced from another Ag(I)-assisted condensation reaction between bdppeda and HCHO. The in situ formation of the L(1) and L(2) ligands provides a new route to the N-heterocyclic diphosphine ligands, and an interesting insight into the coordination chemistry of their metal complexes.  相似文献   

4.
The synthesis and characterization of the complexes of Cu(I), Ag(I), Cu(II), and Co(II) ions with 1,2,5-selenadiazolopyridine (psd) is reported. The following complexes have been prepared: [Cu(2)(psd)(3)(CH(3)CN)(2)](2+)2(PF(6)(-)); [(CuCl)(2)(psd)(3)]; [Cu(2)(psd)(6)](2+)2(ClO(4))(-); [Ag(2)(psd)(2)](2+)2(NO(3))(-); [Ag(2)(psd)(2)](2+)2(CF(3)COO)(-); [Cu(psd)(2)(H(2)O)(3)](2+)2(ClO(4))(-)·(psd)(2); [Cu(psd)(4)(H(2)O)](2+)2(ClO(4))(-)·(CHCl(3)); [Cu(psd)(2)(H(2)O)(3)](2+)2(NO(3))(-)·(H(2)O)·(psd)(2), and [Co(psd)(2)(H(2)O)(4)](2+)2(ClO(4))(-)·(psd)(2). The electronic structure of ligand psd, in particular the bond order of Se-N bonds, has been probed by X-ray diffraction, (77)Se NMR, and computational studies. A detailed analysis of the crystal structures of the ligand and the complexes revealed interesting supramolecular assembly. The assembly was further facilitated by the presence of neutral ligands for some complexes (Cu(II) and Co(II)). The molecular structure of the ligand showed that it was present as a dimer in the solid state where the monomers were linked by strong secondary bonding Se···N interactions. The crystal structures of Cu(I) and Ag(I) complexes revealed the dinuclear nature with characteristic metallophilic interactions [M···M] (M = Cu, Ag), while the Cu(II) and Co(II) complexes were mononuclear. The presence of M···M interactions has been further probed by Atoms in Molecules (AIM) calculations. The paramagnetic Cu(II) and Co(II) complexes have been characterized by UV-vis, ESI spectroscopy, and room temperature magnetic measurements.  相似文献   

5.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

6.
Reactions of Pt(diimine)(tdt) (tdt =3,4-toluenedithiolate) with [M(2)(dppm)(2)(MeCN)(2)](2+) (M = Cu(I) or Ag(I), dppm = bis(diphenylphosphino)methane) gave heterotrinuclear complexes [PtCu(2)(tdt)(mu-SH)(dppm)(3)](ClO(4)) (1) and [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (diimine = 2,2'-bpyridine (bpy) 2; 4,4'-dimethyl-2,2'-bipyridine (dmbpy) 3; phenanthroline (phen) 4, 5-bromophenanthroline (Brphen) 5) for M = Cu(I), but [PtAg(2)(tdt)(mu-SH)(dppm)(3)](SbF(6)) (6) and [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (diimine = bpy 7; dmbpy 8; phen 9; Brphen 10) for M = Ag(I). While the complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) result from linkage of Pt(diimine)(tdt) and [M(2)(dppm)(2)(MeCN)(2)](2+) by tdt sulfur donors, formation of [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5) is related to rupture of metal-ligand bonds in the metal components and recombination between the ligands and the metal atoms by self-assembly. The formation of 1 and 6 is involved not only in dissociation and recombination of the metal components, but also in disruption of C-S bonds in the dithiolate (tdt). The dithiolate tdt adopts a chelating and bridging coordination mode in anti conformation for [PtCu(2)(diimine)(2)(tdt)(dppm)(2)](ClO(4))(2) (2-5), whereas there is the syn conformation for other complexes. Compounds 1 and 6 represent sparse examples of mu-SH-bridged heterotrinuclear Pt(II)M(I)(2) complexes, in which Pt(II)-M(I) centers are bridged by dppm and sulfur donors of tdt, whereas M(I)-M(I) (M = Cu for 1; Ag for 6) centers are linked by dppm and the mu-SH donor. The (31)P NMR spectra show typical platinum satellites (J(Pt-P) = 1450-1570 Hz) for 1-6 and Ag-P coupling for Pt(II)-Ag(I) (J(Ag-P) = 350-450 Hz) complexes 6-10. All of the complexes show intense emission in the solid state and in frozen glasses at 77 K. The complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) also afford emission in fluid acetonitrile solutions at room temperature. Solid-state emission lifetimes at room temperature are in the microsecond range. It is revealed that emission energies of the trinuclear heterometallic complexes [PtAg(2)(diimine)(tdt)(dppm)(2)](SbF(6))(2) (7-10) exhibit a remarkable blue shift (0.10-0.35 eV) relative to those of the precursor compounds Pt(diimine)(tdt). The crystal structures of 1, 2, 4, 6, 8, and 9 were determined by X-ray crystallography.  相似文献   

7.
The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2'-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether ligands maintain their tendency to fold themselves even in solution. The bis-mu-chloro dimers 1 and 2 show a spin-allowed but Laporte-forbidden t(2g)(6)((1)A(1g))--> t(2g)(5) e(g)(1)((1)T(1g), (1)T(2g)) d-d transition. They also display an intense Ru(II) dpi--> py/bzim (pi*) metal-to-ligand charge transfer (MLCT) transition. The mononuclear complexes 3-8 exhibit dpi-->pi* MLCT transitions in the range 340-450 nm. The binuclear complexes 1 and 2 exhibit a ligand field ((3)MC) luminescence even at room temperature, whereas the mononuclear complexes 3 and 4 show a ligand based radical anion ((3)MLCT) luminescence. The binuclear complexes 1 and 2 undergo two successive oxidation processes corresponding to successive Ru(II)/Ru(III) couples, affording a stable mixed-valence Ru(II)Ru(III) state (K(c): 1, 3.97 x 10(6); 2, 1.10 x 10(6)). The mononuclear complexes 3-7 exhibit only one while 8 shows two quasi-reversible metal-based oxidative processes. The coordinated 'soft' thioether raises the redox potentials significantly by stabilising the 'soft' Ru(II) oxidation state. One or two ligand-based reduction processes were also observed for the mononuclear complexes.  相似文献   

8.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

9.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

10.
Aromatic ring amination reactions in the ruthenium complex of 2-(phenylazo)pyridine is described. The substitutionally inert cationic brown complex [Ru(pap)(3)](ClO(4))(2) (1) (pap = 2-(phenylazo)pyridine) reacts smoothly with aromatic amines neat and in the presence of air to produce cationic and intense blue complexes [Ru(HL(2))(3)](ClO(4))(2) (2) (HL(2) = 2-[(4-(arylamino)phenyl)azo]pyridine). These were purified on a preparative TLC plate. The X-ray structure of the new and representative complex 2c has been solved to characterize them. The results are compared with those of the starting complex, [Ru(pap)(3)](ClO(4))(2) (1). The transformation 1 --> 2 involves aromatic ring amination at the para carbon (with respect to the diazo function) of the pendant phenyl rings of all three coordinated pap ligands in 1. The transformation is stereoretentive, and the amination reaction is regioselective. The extended ligand HL(2) coordinates as a bidentate ligand and chelates to ruthenium(II) through the pyridine and one of the azo nitrogens. The amine nitrogen of this bears a hydrogen atom and remains uncoordinated. Similarly, the amination reaction on the mixed-ligand complex [Ru(pap)(bpy)(2)](ClO(4))(2) produces the blue complex [Ru(HL(2))(bpy)(2)](ClO(4))(2) (3) as anticipated. The reactions of [RuCl(2)(dmso)(4)] and [Ru(S)(2)(L)(2)](2+) (dmso = dimethyl sulfoxide, S = labile coordinated solvent, L = 2,2'-bipyridine (bpy) and pap) with the preformed HL(2) ligand have been explored. The structure of the representative complex [RuCl(2)(HL(2a))(2)] (5a) is reported. It has the chlorides in trans configuration while the pyridine as well as azo nitrogens are in cis geometry. Optical spectra and redox properties of the newly synthesized complexes are reported. All the ruthenium complexes of HL(2) are characterized by their intense blue solution colors. The lowest energy transitions in these complexes appear near 600 nm, which have been attributed to intraligand charge-transfer transitions. For example, the lowest energy visible range transition in [Ru(HL(2b))(3)](2+) appears at 602 nm and its intensity is 65 510 M(-1) cm(-1). All the tris chelates show multiple-step electron-transfer processes. In [Ru(HL(2))(3)](2+), six reductions waves constitute the complete electron-transfer series. The electrons are believed to be added successively to the three azo functions. In the mixed-ligand chelates [Ru(HL(2))(pap)(2)](2+) and [Ru(HL(2))(bpy)(2)](2+) the reductions due to HL(2), pap, and bpy are observed.  相似文献   

11.
Copper(II) complexes of three bis(tacn) ligands, [Cu(2)(T(2)-o-X)Cl(4)] (1), [Cu(2)(T(2)-m-X)(H(2)O)(4)](ClO(4))(4).H(2)O.NaClO(4) (2), and [Cu(2)(T(2)-p-X)Cl(4)] (3), were prepared by reacting a Cu(II) salt and L.6HCl (2:1 ratio) in neutral aqueous solution [T(2)-o-X = 1,2-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-m-X = 1,3-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene; T(2)-p-X = 1,4-bis(1,4,7-triazacyclonon-1-ylmethyl)benzene]. Crystals of [Cu(2)(T(2)-m-X)(NPP)(mu-OH)](ClO(4)).H(2)O (4) formed at pH = 7.4 in a solution containing 2 and disodium 4-nitrophenyl phosphate (Na(2)NPP). The binuclear complexes [Cu(2)(T(2)-o-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (5) and [Cu(2)(T(2)-m-XAc(2))(H(2)O)(2)](ClO(4))(2).4H(2)O (6) were obtained on addition of Cu(ClO(4))(2).6H(2)O to aqueous solutions of the bis(tetradentate) ligands T(2)-o-XAc(2) (1,2-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene and T(2)-m-XAc(2) (1,3-bis((4-(carboxymethyl)-1,4,7-triazacyclonon-1-yl)methyl)benzene), respectively. In the binuclear complex, 3, three N donors from one macrocycle and two chlorides occupy the distorted square pyramidal Cu(II) coordination sphere. The complex features a long Cu...Cu separation (11.81 A) and intermolecular interactions that give rise to weak intermolecular antiferromagnetic coupling between Cu(II) centers. Complex 4 contains binuclear cations with a single hydroxo and p-nitrophenyl phosphate bridging two Cu(II) centers (Cu...Cu = 3.565(2) A). Magnetic susceptibility studies indicated the presence of strong antiferromagnetic interactions between the metal centers (J = -275 cm(-1)). Measurements of the rate of BNPP (bis(p-nitrophenyl) phosphate) hydrolysis by a number of these metal complexes revealed the greatest rate of cleavage for [Cu(2)(T(2)-o-X)(OH(2))(4)](4+) (k = 5 x 10(-6) s(-1) at pH = 7.4 and T = 50 degrees C). Notably, the mononuclear [Cu(Me(3)tacn)(OH(2))(2)](2+) complex induces a much faster rate of cleavage (k = 6 x 10(-5) s(-1) under the same conditions).  相似文献   

12.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

13.
Metal complex formation of the two cyclic triamines 6-methyl-1,4-diazepan-6-amine (MeL(a)) and all-cis-2,4,6-trimethylcyclohexane-1,3,5-triamine (Me(3)tach) was studied. The structure of the free ligands (H(x)MeL(a))(x+) and H(x)Me(3)tach(x+) (0 ≤ x ≤ 3) was investigated by pH-dependent NMR spectroscopy and X-ray diffraction experiments. The crystal structure of (H(2)Me(3)tach)(p-O(3)S-C(6)H(4)-CH(3))(2) showed a chair conformation with axial nitrogen atoms for the doubly protonated species. In contrast to a previous report, Me(3)tach was found to be a stronger base than the parent cis-cyclohexane-1,3,5-triamine (tach); pK(a)-values of H(3)Me(3)tach(3+) (25 °C, 0.1 M KCl): 5.2, 7.4, 11.2. The crystal structures of (H(3)MeL(a))(BiCl(6))·2H(2)O and (H(3)MeL(a))(ClO(4))Cl(2) exhibited two distinct twisted chair conformations of the seven membered diazepane ring. [Co(MeL(a))(2)](3+) (cis: 1(3+), trans: 2(3+)), trans-[Fe(MeL(a))(2)](3+) (3(3+)), [(MeL(a))ClCd(μ(2)-Cl)](2) (4), trans-[Cu(MeL(a))(2)](2+) (5(2+)), and [Cu(HMeL(a))Br(3)] (6) were characterized by single crystal X-ray analysis of 1(ClO(4))(3)·H(2)O, 2Br(3)·H(2)O, 3(ClO(4))(3)·0.8MeCN·0.2MeOH, 4, 5Br(2)·0.5MeOH, and 6·H(2)O. Formation constants and redox potentials of MeL(a) complexes were determined by potentiometric, spectrophotometric, and cyclovoltammetric measurements. The stability of [M(II)(MeL(a))](2+)-complexes is low. In comparison to the parent 1,4-diazepan-6-amine (L(a)), it is only slightly enhanced. In analogy to L(a), MeL(a) exhibited a pronounced tendency for forming protonated species such as [M(II)(HMeL(a))](3+) or [M(II)(MeL(a))(HMeL(a))](3+) (see 6 as an example). In contrast to MeL(a), Me(3)tach forms [M(II)L](2+) complexes (M = Cu, Zn) of very high stability, and the coordination behavior corresponds mainly to an "all-or-nothing" process. Molecular mechanics calculations showed that the low stability of L(a) and MeL(a) complexes is mainly due to a large amount of torsional strain within the pure chair conformation of the diazepane ring, required for tridentate coordination. This behavior is quite contrary to Me(3)tach and tacn (tacn =1,4,7-triazacyclononane), where the main portion of strain is already preformed in the free ligand, and the amount, generated upon complex formation, is comparably low.  相似文献   

14.
Two novel binuclear complexes [Cu(2)(L)].(ClO(4))(2) (1) and [Zn(2)(L)].(ClO(4))(2) (2) were synthesized and crystallographically characterized {L = 1(4),5(4)-dimethyl-1(2),5(2)-dihydroxy-1(1,3),5(1,3)-dibenzene-3(1,4),7(1,4)-di-1,4,7-triazacyclononane}. The cation [Cu(2)(L)](2+) structure of 1 is similar to that of [Zn(2)(L)](2+) of 2. The central ion is bridged by the di-phenoxo of L and lies in a close to perfect square pyramidal geometry. 1 and 2 crystallize in the triclinic space group P1. The two complexes effectively promote the cleavage of plasmid DNA in the presence of activating agents at physiological pH and temperature. The pseudo-Michaelis-Menten kinetic parameters k(cat) = 1.61 h(-1), K(m) = 1.35 x 10(-5) M for complex 1 in the presence of mercaptoethanol; k(cat) = 2.48 h(-1), K(m) = 5.5 x 10(-5)M for complex 2 in the presence of hydrogen peroxide were obtained. The mechanism of plasmid DNA cleavage was studied by adding standard radical scavengers. DNA cleavage reaction by the binuclear Zn(II)/H(2)O(2) system is a hydrolytic mechanism.  相似文献   

15.
The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).  相似文献   

16.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

17.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

18.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

19.
Three 5,5'-dicarbamate-2,2'-bipyridine ligands (L = L(1)-L(3)) bearing ethyl, isopropyl or tert-butyl terminals, respectively, on the carbamate substituents were synthesized. Reaction of the ligands L with the transition metal ions M = Fe(2+), Cu(2+), Zn(2+) or Ru(2+) gave the complexes ML(n)X(2)·xG (1-12, n = 1-3; X = Cl, NO(3), ClO(4), BF(4), PF(6), ?SO(4); G = Et(2)O, DMSO, CH(3)OH, H(2)O), of which [Fe(L(2))(3)???SO(4)]·8.5H(2)O (2), [Fe(L(1))(3)???(BF(4))(2)]·2CH(3)OH (7), [Fe(L(2))(3)???(Et(2)O)(2)](BF(4))(2)·2CH(3)OH (8), [ZnCl(2)(L(1))][ZnCl(2)(L(1))(DMSO)]·2DMSO (9), [Zn(L(1))(3)???(NO(3))(2)]·2H(2)O (10), [Zn(L(2))(3)???(ClO(4))(Et(2)O)]ClO(4)·Et(2)O·2CH(3)OH·1.5H(2)O (11), and [Cu(L(1))(2)(DMSO)](ClO(4))(2)·2DMSO (12) were elucidated by single-crystal X-ray crystallography. In the complexes ML(n)X(2)·xG the metal ion is coordinated by n = 1, 2 or 3 chelating bipyridine moieties (with other anionic or solvent ligands for n = 1 and 2) depending on the transition metal and reaction conditions. Interestingly, the carbamate functionalities are involved in hydrogen bonding with various guests (anions or solvents), especially in the tris(chelate) complexes which feature the well-organized C(3)-clefts for effective guest inclusion. Moreover, the anion binding behavior of the pre-organized tris(chelate) complexes was investigated in solution by fluorescence titration using the emissive [RuL(3)](2+) moiety as a probe. The results show that fluorescent recognition of anion in solution can be achieved by the Ru(II) complexes which exhibit good selectivities for SO(4)(2-).  相似文献   

20.
A series of new dicobalt complexes of the permethylated macrocyclic hexaamine dithiophenolate ligand H(2)L(Me) have been prepared and investigated in the context of ligand binding and oxidation state changes. The octadentate ligand is an effective dinucleating ligand that supports the formation of bioctahedral complexes with a central N(3)Co(mu-SR)(2)(mu-X)CoN(3) core structure, leaving a free bridging position X for the coordination of the substrates. The acetato- and cinnamato-bridged complexes [(L(Me))Co(II)(2)(mu-O(2)CMe)](+) (2) and [(L(Me))Co(II)(2)(mu-O(2)CCH=CHPh)](+) (5) were prepared by reaction of the mu-Cl complex [(L(Me))Co(II)(2)(mu-Cl)](+) (1) with the corresponding sodium carboxylates in methanol. The electrochemical properties of these and of the methyl carbonate complex [(L(Me))Co(II)(2)(mu-O(2)COMe)](+) (8) were also investigated. All complexes undergo two stepwise oxidations at ca. E(1)(1/2) = +0.22 and at E(2)(1/2) = ca. +0.60 V vs SCE, affording the mixed-valent complexes [(L(Me))Co(II)Co(III)(mu-O(2)CR)](2+) (3, 6, 9) and the fully oxidized Co(III)Co(III) forms [(L(Me))Co(III)(2)(mu-O(2)CR)](3+) (4, 7, 10), respectively. Compounds 3, 6, 9 and 4, 7, 10 refer to acetato-, cinnamato-, and methylcarbonato species, respectively. The Co(II)Co(III) compounds were prepared by comproportionation of the respective Co(II)(2) and Co(III)(2) compounds. The Co(III)Co(III) species were prepared by bromine oxidation of the Co(II)Co(II) forms. The crystal structures of complexes 2.BPh(4).MeCN, 3.(I(3))(2), 5.BPh(4).2MeCN, 6.(ClO(4))(2).EtOH, 7.(ClO(4))(3).MeCN.(H(2)O)(3), and 9.(ClO(4))(2).(MeOH)(2).H(2)O were determined by single-crystal X-ray crystallography at 210 K. The oxidations occur without gross structural changes of the parent complexes. The Co(II)Co(III) complexes are composed of high-spin Co(II) (d(7)) and low-spin Co(III) (d(6)) ions. The Co(III)Co(III) complexes are diamagnetic. The oxidation reactions affect the binding mode of the substrates. In the Co(II)(2) and Co(II)Co(III) forms the carboxylates bridge the two Co(2+) ions in a symmetric mu-1,3 fashion with uniform C-O bond distances, whereas asymmetric bridging modes, with one short C=O and one long C-O distance, are adopted in the fully oxidized species. This is consistent with the observed shifts in vibrational frequencies for nu(as)(C-O) and nu(s)(C-O) across the series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号