首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diphenylvinylarsine oxide reacts with 1,2-bis(phenylphosphino)ethane in the presence of potassium tert-butoxide to give the anti-Markovnikov product (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,10-diarsa-4,7-diphosphadecane dioxide-1AsO,10AsO, which, upon reduction with HSiCl(3)/NEt(3) in boiling acetonitrile, affords in 84% overall yield the di(tertiary arsine)-di(tertiary phosphine) (R,R)-(+/-)/(R,S)-diphars. After separation of the diastereomers by fractional crystallization, the (R,R)-(+/-) form of the ligand was resolved by metal complexation with (+)-di(mu-chloro)bis[(R)-1-[1-(dimethylamino)ethyl]-2-phenyl-C(2),N]dipalladium(II): (R,R)-diphars, mp 87-88 degrees C, has [alpha](D)(21) = -18.6 (c 1.0, CH(2)Cl(2)); (S,S)-diphars has [alpha](D)(21) = +18.4 (c 1.0, CH(2)Cl(2)). The crystal and molecular structures of the complexes (M)-[M(2)[(R,R)-diphars](2)](PF(6))(2) (M = Cu, Ag, Au) have been determined: [M-(S(Cu),S(Cu))]-(-)-[Cu(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.084(3) A, b = 18.376(3) A, c = 29.149(6) A, Z = 4; [M-(S(Ag),S(Ag))]-(+)-[Ag(2)[(R,R)-diphars](2)](PF(6))(2), triclinic, P1, a = 12.487(2) A, b = 12.695(4) A, c = 27.243(4) A, alpha = 92.06 degrees, beta = 95.19 degrees, gamma = 98.23 degrees, Z = 2; [M-(S(Au),S(Au))]-(-)-[Au(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.199(4) A, b = 18.373(4) A, c = 29.347(2) A, Z = 4. In the copper(I) and gold(I) helicates, each ligand strand completes 1.5 turns of an M helix in a parallel arrangement about the two chiral MAs(2)P(2) stereocenters of S configuration. The unit cell of the silver(I) complex contains one molecule each of the parallel helicate of M configuration and the conformationally related double alpha-helix of M configuration in which each ligand strand completes 0.5 turns of an M helix about two metal stereocenters of S configuration. Energy minimization calculations of the three structures with use of the program SPARTAN 5.0 gave results that were in close agreement with the core structures observed.  相似文献   

2.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

3.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

4.
A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.  相似文献   

5.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

6.
A series of unsymmetrical 1,2-bis(phosphino)ethanes R(2)PCH(2)CH(2)PR'(2) and 1-arsino-2-phosphinoethanes R(2)AsCH(2)CH(2)PR'(2) mainly with bulky substituents R and R' were prepared from the cyclic sulfate by stepwise cleavage of the carbon-oxygen bonds by LiPR(2) and LiPR'(2) or LiAsR(2) and LiPR'(2), respectively. Analogously, racemic mixtures of R(2)PCH(2)CH(Me)PPh(2)(R =iPr, Cy ) as well as the enantiomers (R)-, (R)- and (R)-tBu(2)PCH(2)CH(Me)PPh(2)(R)- were obtained from the corresponding unsymmetrical cyclic sulfates and (S)-. On a similar route, the racemates of the 1,3-bis(phosphino)propanes R(2)PCH(2)CH(2)CH(Me)PPh(2)(R =iPr, tBu ), optically pure (R)- and (S,S)-iPr(2)PCH(Me)CH(2)CH(Me)PPh(2)(S,S)- were prepared. The reaction of [[RhCl([small eta](4)-C(8)H(12))](2)] with chelating ligands L-L, where L-L is R(2)PCH(2)P(men)(2)(R =iPr, Ph; men =(1S,2R,5S)-menthyl), Cy(2)AsCH(2)P(men)(2), or (R)-, (R)-, (R)-, (R)- and (S,S)-, in the presence of AgPF(6), gave the complexes [Rh(eta(4)-C(8)H(12))(L-L)]PF(6) which were used as pre-catalysts in the hydrogenation of the methyl ester of alpha-acetamidocinnamic acid (ACM). Depending on L-L, the solvent, the temperature and the pressure of H(2), optical yields of up to 69% ee were achieved. For two of the rhodium complexes, and, the molecular structures were determined by X-ray crystallography.  相似文献   

7.
A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry. The solubility behavior of NiCl(2)[CH(2)P[C(6)H(4)(SiMe(3-b)(CH(2)CH(2)C(x)F(2x+1)b)-4](2)](2) (3: b = 1-3; x = 6, 8) in THF, toluene, and c-C(6)F(11)CF(3) was found to follow the same trends as those observed for the free fluorous ligands 1. A similar correlation between the partition coefficient (P) of complexes 3 and free 1 was observed in fluorous biphasic solvent systems, with a maximum value obtained for 3f (b = 3, x = 6, P = 23 in favor of the fluorous phase).  相似文献   

8.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

9.
The normally robust monoalkylated complexes [Pt(2)(mu-S)(mu-SR)(PPh(3))(4)](+) can be activated towards further alkylation. Dialkylated complexes [Pt(2)(mu-SR)(2)(P-P)(2)](2+) (P-P=2 x PPh(3), Ph(2)P(CH(2))(3)PPh(2)) can be stabilized and isolated by the use of electron-rich and aromatic halogenated substituents R [e.g. 3-(2-bromoethyl)indole and 2-bromo-4'-phenylacetophenone] and 1,3-bis(diphenylphosphino)propane [Ph(2)P(CH(2))(3)PPh(2) or dppp] which enhances the nucleophilicity of the {Pt(2)(mu-S)(2)} core. This strategy led to the activation of [Pt(2)(mu-S)(mu-SR)(PPh(3))(4)](+) towards R-X as well as isolation and crystallographic elucidation of [Pt(2)(mu-SC(10)H(10)N)(2)(PPh(3))(4)](PF(6))(2) (2a), [Pt(2)(mu-SCH(2)C(O)C(6)H(4)C(6)H(5))(2)(PPh(3))(4)](PF(6))(2) (2b), and a range of functionalized-thiolato bridged complexes such as [Pt(2)(mu-SR)(2)(dppp)(2)](PF(6))(2) [R= -CH(2)C(6)H(5) (8a), -CH(2)CHCH(2) (8b) and -CH(2)CN (8c)]. The stepwise alkylation process is conveniently monitored by Electrospray Ionisation Mass Spectrometry, allowing for a direct qualitative comparison of the nucleophilicity of [Pt(2)(mu-S)(2)(P-P)(2)], thereby guiding the bench-top synthesis of some products observed spectroscopically.  相似文献   

10.
Anandhi U  Sharp PR 《Inorganic chemistry》2004,43(21):6780-6785
The pK(a) values in DMSO of the monoprotic complexes [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) (4) (L(2) = Ph(2)PCH(2)CH(2)PPh(2) (dppe), Ph(2)PCMe(2)PPh(2) (dppip)) are 11.9 +/- 0.1 (L(2) = dppe) and 13.5 +/- 0.2 (L(2) = dppip) as determined by (31)P NMR equilibrium titration with bases of known pK(a). Complexes 4 were prepared by treatment of [L(2)Pt(mu-OH)](2)(2+) (1) with N-methylaniline. The oxo complexes [(L(2)Pt)(2)(mu-O)(mu-NMePh)](+), formed in the equilibrium titration reactions, were independently synthesized in THF by deprotonation of [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) with NaN(SiMe(3))(2) and characterized as NaBF(4) adducts. Similar experiments with diprotic [L(2)Pt(mu-OH)](2)(2+) (L(2) = dppe, Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp)) were complicated by exchange processes and were less conclusive, giving pK(a1) < 18 and pK(a2) > 18 in DMSO.  相似文献   

11.
Partyka DV  Holm RH 《Inorganic chemistry》2004,43(26):8609-8616
Reactions of [MO(4)](2)(-) (M = Mo, W) with certain carbon and silicon electrophiles were investigated in acetonitrile in order to produce species of potential utility in the synthesis of analogues of the sites in the xanthine oxidoreductase enzyme family. Silylation of [MoO(4)](2)(-) affords [MoO(3)(OSiPh(3))](1)(-), which with Ph(3)SiSH is converted to [MoO(2)S(OSiPh(3))](1)(-). Reaction with (Ph(3)C)(PF(6))/HS(-) yields the tetrahedral monosulfido species [MO(3)S](2)(-), previously obtained only from the aqueous system [MO(4)](2)(-)/H(2)S. Dithiolene chelate rings are readily introduced upon reaction with 1,2-C(6)H(4)(SSiMe(3))(2), leading to the square pyramidal trioxo complexes [MO(3)(bdt)](2)(-), a previously unknown dithiolene molecular type. Further ring insertion occurs upon reaction of [WO(3)(bdt)](2)(-) with 1,2-C(6)H(4)(SSiMe(3))(2), giving [WO(2)(bdt)(2)](2)(-). Related reactions occur with [ReO(4)](1)(-). Treatment with 1 equiv of (Me(3)Si)(2)S produces [ReO(3)S](1)(-); with 3 equiv of 1,2-C(6)H(4)(SSiMe(3))(2), [ReO(bdt)(2)](1)(-) is obtained with concomitant Re(VII) --> Re(V) reduction. X-ray structures are reported for [MO(3)S](z)(-) (M = Mo, W, z = 2; M = Re, z = 1), [MO(3)(bdt)](2)(-), and [WO(2)(OSiPh(3))(bdt)](1)(-), a silylation product of [WO(3)(bdt)](2)(-). [MoO(3)(bdt)](2)(-) is related to the site of inactive sulfite oxidase, and [WO(2)(OSiPh(3))(bdt)](1)(-) should closely approximate the metric features of the [(dithiolene)MoO(2)(OH)] site in inactive aldehyde/xanthine oxidoreductase. This work provides convenient syntheses of known and new derivatives of tetraoxometalates, among which is entry to a unique class of oxo-monodithiolene complexes.  相似文献   

12.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

13.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

14.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

15.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

16.
In a search for more hydrocarbon solvent soluble derivatives of the parent ligand, 2,6-[Ph(2)P(O)CH(2)](2)C(5)H(3)NO (1a), a series of new ligands, 2,6-[R(2)P(O)CH(2)](2)C(5)H(3)NO [R = Bz (1b); Tol (1c); Et (1d); Pr (1e); Bu (1f); Pn (1g); Hx (1h); Hp (1i); and Oct (1j)] and 2,6-[RR'P(O)CH(2)](2)C(5)H(3)NO [R = Ph, R' = Bz (2a); R = Ph, R' = Me (2b); R = Ph, R' = Hx (2c); R = Ph, R' = Oct (2d)], have been prepared by either Arbusov or Grignard substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation. The new ligands have been characterized by spectroscopic methods, and their coordination chemistry with selected lanthanide ions has been surveyed. Several 1:1 and 2:1 ligand/metal complexes have been isolated, and single-crystal X-ray diffraction analyses for Nd(2a)(NO(3))(3), Er(2a)(NO(3))(3), Yb(1d)(NO(3))(3), and [Nd(1c)(2)](NO(3))(3) are described. The new structural data are discussed in relation to the structures of complexes formed by 1a.  相似文献   

17.
Reactions of the anionic gallium(i) heterocycle, [:Ga{[N(Ar)C(H)](2)}](-) (Ar = C(6)H(3)Pr(i)(2)-2,6), with a variety of mono- and bidentate phosphine, tmeda and 1,5-cyclooctadiene (COD) complexes of group 10 metal dichlorides are reported. In most cases, salt elimination occurs, affording either mono(gallyl) complexes, trans-[MCl{Ga{[N(Ar)C(H)](2)}}(PEt(3))(2)] (M = Ni or Pd) and cis-[PtCl{Ga{[N(Ar)C(H)](2)}}(L)] (L = R(2)PCH(2)CH(2)PR(2), R = Ph (dppe) or cyclohexyl (dcpe)), or bis(gallyl) complexes, trans-[M{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)] (M = Ni, Pd or Pt), cis-[Pt{Ga{[N(Ar)C(H)](2)}}(2)(PEt(3))(2)], cis-[M{Ga{[N(Ar)C(H)](2)}}(2)(L)] (M = Ni, Pd or Pt; L = dppe, Ph(2)CH(2)PPh(2) (dppm), tmeda or COD). The crystallographic and spectroscopic data for the complexes show that the trans-influence of the gallium(i) heterocycle lies in the series, B(OR)(2) > H(-) > PR(3) approximately [:Ga{[N(Ar)C(H)](2)}](-) > Cl(-). Comparisons between the reactivity of one complex, [Pt{Ga{[N(Ar)C(H)](2)}}(2)(dppe)], with that of closely related platinum bis(boryl) complexes indicate that the gallyl complex is not effective for the catalytic or stoichiometric gallylation of alkenes or alkynes. The phosphaalkyne, Bu(t)C[triple bond, length as m-dash]P, does, however, insert into one gallyl ligand of the complex, leading to the novel, crystallographically characterised P,N-gallyl complex, [Pt{Ga{[N(Ar)C(H)](2)}}{Ga{PC(Bu(t))C(H)[N(Ar)]C(H)N(Ar)}}(dppe)]. An investigation into the mechanism of this insertion reaction has been undertaken.  相似文献   

18.
The homoleptic bis(dithiolene) complexes [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl) undergo two successive reductions to form anions that display [M(S(2)C(2)R(2))(2)](2)(2-) <--> 2[M(S(2)C(2)R(2))(2)](1-) solution equilibria. The neutral dimers react with Ph3P to form square pyramidal [M(Ph(3)P)(S(2)C(2)R(2))(2)](0). Voltammetric measurements upon [M(Ph(3)P)(S(2)C(2)R(2))(2)](0) in CH(2)Cl(2) reveal only irreversible features at negative potentials, consistent with Ph(3)P dissociation upon reduction. Dissociation and reassociation of Ph(3)P from and to [Fe(Ph(3)P)(S(2)C(2)R(2))(2)](0) is demonstrated by spectroelectrochemical measurements. These collective observations form the basis for a cycle of reversible, electrochemically controlled binding of Ph(3)P to [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl). All members of the cycle ([M(S(2)C(2)R(2))(2)](2)(0), [M(S(2)C(2)R(2))(2)](2)(1-), [MM(S(2)C(2)R(2))(2)](2)(2-), [M(S(2)C(2)R(2))(2)](1-), [M(Ph(3)P)(S(2)C(2)R(2))(2)]) for M = Fe, Co have been characterized by crystallography. Square planar [Fe(S(2)C(2)R(2))(2)](1-) is the first such iron dithiolene species to be structurally identified and reveals Fe-S bond distances of 2.172(1) and 2.179(1) Angstrom, which are appreciably shorter than those in corresponding square planar dianions.  相似文献   

19.
[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R'(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ~0.04 M (34 equiv). At concentrations above ~0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.  相似文献   

20.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号