首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syn coordination of histidine residues at the active sites of several carboxylate-rich non-heme diiron enzymes has been difficult to reproduce with small molecule model compounds. In this study, ligands derived from 1,8-naphthyridine, phthalazine, and 1,2-diethynylbenzene were employed to mimic this geometric feature. The preassembled diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)(2)] (1), where Ar(Tol)CO(2)(-) is the sterically hindered carboxylate 2,6-di(p-tolyl)benzoate, served as a convenient starting material for the preparation of iron(II) complexes, all of which were crystallographically characterized. Use of the ligand 2,7-dimethyl-1,8-naphthyridine (Me(2)-napy) afforded the mononuclear complex [Fe(O(2)CAr(Tol))(2)(Me(2)-napy)] (2), whereas dinuclear [Fe(2)(micro-DMP)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(THF)] (3) resulted when 1,4-dimethylphthalazine (DMP) was employed. The dinuclear core of compound 3 is kinetically labile, as evidenced by the formation of [Fe(O(2)CAr(Tol))(2)(vpy)(2)] (4) upon addition of 2-vinylpyridine (vpy). The diiron analogue of 4, [Fe(2)(micro-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(vpy)(2)] (5), was prepared directly from 1. When the sterically more demanding ligand 2,6-di(4-tert-butylphenyl)benzoate (Ar(4-tBuPh)CO(2)(-)) was used, mononuclear [Fe(O(2)CAr(4)(-)(tBuPh))(2)(THF)(2)] (6) and [Fe(O(2)CAr(4)(-)(tBuPh))(2)(DMP)(2)] (7) formed. The difficulty in stabilizing a dinuclear core with these simple (N)(2)-donor ligands was circumvented by preparing a family of 1,2-diethynylbenzene-based ligands, from which were readily assembled the complexes [Fe(2)(Et(2)BCQEB(Et))(micro-O(2)CAr(Tol))(3)](OTf) (15) and [Cu(2)(Et(2)BCQEB(Et))(micro-I)(2)] (16), where Et(2)BCQEB(Et) is 1,2-bis(3-ethynyl-8-carboxylatequinoline)benzene ethyl ester. The Et(2)BCQEB(Et) framework provides both structural flexibility and the desired syn nitrogen donor geometry, thus serving as a good first-generation ligand in this class.  相似文献   

2.
In this study benzyl and ethyl groups were appended to pyridine and aniline ancillary ligands in diiron(II) complexes of the type [Fe(2)(mu-O(2)CAr(R))(2)(O(2)CAr(R))(2)(L)(2)], where (-)O(2)CAr(R) is a sterically hindered terphenyl carboxylate, 2,6-di(p-tolyl)- or 2,6-di(p-fluorophenyl)benzoate (R = Tol or 4-FPh, respectively). These crystallographically characterized compounds were prepared as analogues of the diiron(II) center in the hydroxylase component of soluble methane monooxygenase (MMOH). The use of 2-benzylpyridine (2-Bnpy) yielded doubly bridged [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Bnpy)(2)] (1) and [Fe(2)(mu-O(2)CAr(4)(-)(FPh))(2)(O(2)CAr(4)(-)(FPh))(2)(2-Bnpy)(2)] (4), whereas tetra-bridged [Fe(2)(mu-O(2)CAr(Tol))(4)(4-Bnpy)(2)] (3) resulted when 4-benzylpyridine (4-Bnpy) was employed. Similarly, 2-(4-chlorobenzyl)pyridine (2-(4-ClBn)py) and 2-benzylaniline (2-Bnan) were employed as N-donor ligands to prepare [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-(4-ClBn)py)(2)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Bnan)(2)] (5). The placement of the substituent on the pyridine ring had no effect on the geometry of the diiron(II) compounds isolated when 2-, 3-, or 4-ethylpyridine (2-, 3-, or 4-Etpy) was introduced as the ancillary nitrogen ligand. The isolated [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-Etpy)] (6), [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(3-Etpy)] (7), [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-Etpy)] (8), and [Fe(2)(mu-O(2)CAr(4)(-FPh))(2)(O(2)CAr(4)(-)(FPh))(2)(2-Etpy)(2)] (9) complexes all contain doubly bridged metal centers. The oxygenation of compounds 1-9 was studied by GC-MS and NMR analysis of the organic fragments following decomposition of the product complexes. Hydrocarbon fragment oxidation occurred for compounds in which the substrate moiety was in close proximity to the diiron center. The extent of oxidation depended upon the exact makeup of the ligand set.  相似文献   

3.
Progress toward the development of functional models of the carboxylate-bridged diiron active site in soluble methane monooxygenase is described in which potential substrates are introduced as substituents on bound pyridine ligands. Pyridine ligands incorporating a thiol, sulfide, sulfoxide, or phosphine moiety were allowed to react with the preassembled diiron(II) complex [Fe(2)(mu-O(2)CAr(R))(2)(O(2)CAr(R))(2)(THF)(2)], where (-)O(2)CAr(R) is a sterically hindered 2,6-di(p-tolyl)- or 2,6-di(p-fluorophenyl)benzoate (R = Tol or 4-FPh). The resulting diiron(II) complexes were characterized crystallographically. Triply and doubly bridged compounds [Fe(2)(mu-O(2)CAr(Tol))(3)(O(2)CAr(Tol))(2-MeSpy)] (4) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(2-MeS(O)py)(2)] (5) resulted when 2-methylthiopyridine (2-MeSpy) and 2-pyridylmethylsulfoxide (2-MeS(O)py), respectively, were employed. Another triply bridged diiron(II) complex, [Fe(2)(mu-O(2)CAr(4)(-)(FPh))(3)-(O(2)CAr(4)(-)(FPh))(2-Ph(2)Ppy)] (3), was obtained containing 2-diphenylphosphinopyridine (2-Ph(2)Ppy). The use of 2-mercaptopyridine (2-HSpy) produced the mononuclear complex [Fe(O(2)CAr(Tol))(2)(2-HSpy)(2)] (6a). Together with that of previously reported [Fe(2)(mu-O(2)CAr(Tol))(3)(O(2)CAr(Tol))(2-PhSpy)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(3)(O(2)CAr(Tol))(2-Ph(2)Ppy)] (1), the dioxygen reactivity of these iron(II) complexes was investigated. A dioxygen-dependent intermediate (6b) formed upon exposure of 6a to O(2), the electronic structure of which was probed by various spectroscopic methods. Exposure of 4 and 5 to dioxygen revealed both sulfide and sulfoxide oxidation. Oxidation of 3 in CH(2)Cl(2) yields [Fe(2)(mu-OH)(2)(mu-O(2)CAr(4)(-)(FPh))(O(2)CAr(4)(-FPh))(3)(OH(2))(2-Ph(2)P(O)py)] (8), which contains the biologically relevant {Fe(2)(mu-OH)(2)(mu-O(2)CR)}(3+) core. This reaction is sensitive to the choice of carboxylate ligands, however, since the p-tolyl analogue 1 yielded a hexanuclear species, 7, upon oxidation.  相似文献   

4.
The catalytic oxidation of triphenylphosphine in the presence of dioxygen by the diiron(II) complex [Fe(2)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)(MeCN)(2)](OTf)(2) (1), where (-)O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane, has been investigated. The corresponding diiron(III) complex, [Fe(2)(micro-O)(micro-O(2)CAr(Tol))(2)(Me(3)TACN)(2)](OTf)(2) (2), the only detectable iron-containing species during the course of the reaction, can itself promote the reaction. Phosphine oxidation is coupled to the catalytic oxidation of THF solvent to afford, selectively, the C-C bond-cleavage product 3-hydroxypropylformate, an unprecedented transformation. After consumption of the phosphine, solvent oxidation continues but results in the products 2-hydroperoxytetrahydrofuran, butyrolactone, and butyrolactol. The similarities of the reaction pathways observed in the presence and absence of catalyst, as well as (18)O labeling, solvent dependence, and radical probe experiments, provide evidence that the oxidation is initiated by a metal-centered H-atom abstraction from THF. A mechanism for catalysis is proposed that accounts for the coupled oxidation of the phosphine and the THF ring-opening reaction.  相似文献   

5.
Two tetracarboxylate diiron(II) complexes, [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(C(5)H(5)N)(2)] (1a) and [Fe(2)(mu-O(2)CAr(Tol))(4)(4-(t)BuC(5)H(4)N)(2)] (2a), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate, react with O(2) in CH(2)Cl(2) at -78 degrees C to afford dark green intermediates 1b (lambda(max) congruent with 660 nm; epsilon = 1600 M(-1) cm(-1)) and 2b (lambda(max) congruent with 670 nm; epsilon = 1700 M(-1) cm(-1)), respectively. Upon warming to room temperature, the solutions turn yellow, ultimately converting to isolable diiron(III) compounds [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (L = C(5)H(5)N (1c), 4-(t)BuC(5)H(4)N (2c)). EPR and M?ssbauer spectroscopic studies revealed the presence of equimolar amounts of valence-delocalized Fe(II)Fe(III) and valence-trapped Fe(III)Fe(IV) species as major components of solution 2b. The spectroscopic and reactivity properties of the Fe(III)Fe(IV) species are similar to those of the intermediate X in the RNR-R2 catalytic cycle. EPR kinetic studies revealed that the processes leading to the formation of these two distinctive paramagnetic components are coupled to one another. A mechanism for this reaction is proposed and compared with those of other synthetic and biological systems, in which electron transfer occurs from a low-valent starting material to putative high-valent dioxygen adduct(s).  相似文献   

6.
Lee D  Lippard SJ 《Inorganic chemistry》2002,41(10):2704-2719
General synthetic routes are described for a series of diiron(II) complexes supported by sterically demanding carboxylate ligands 2,6-di(p-tolyl)benzoate (Ar(Tol)CO(2)(-)) and 2,6-di(4-fluorophenyl)benzoate (Ar(4-FPh)CO(2)(-)). The interlocking nature of the m-terphenyl units in self-assembled [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (L = C(5)H(5)N (4); 1-MeIm (5)) promotes the formation of coordination geometries analogous to those of the non-heme diiron cores in the enzymes RNR-R2 and Delta 9D. Magnetic susceptibility and M?ssbauer studies of 4 and 5 revealed properties consistent with weak antiferromagnetic coupling between the high-spin iron(II) centers. Structural studies of several derivatives obtained by ligand substitution reactions demonstrated that the [Fe(2)(O(2)CAr')(4)L(2)] (Ar' = Ar(Tol); Ar(4-FPh)) module is geometrically flexible. Details of ligand migration within the tetracarboxylate diiron core, facilitated by carboxylate shifts, were probed by solution variable-temperature (19)F NMR spectroscopic studies of [Fe(2)(mu-O(2)CAr(4-FPh))(2)-(O(2)CAr(4-FPh))(2)(THF)(2)] (8) and [Fe(2)(mu-O(2)CAr(4-FPh))(4)(4-(t)BuC(5)H(4)N)(2)] (12). Dynamic motion in the primary coordination sphere controls the positioning of open sites and regulates the access of exogenous ligands, processes that also occur in non-heme diiron enzymes during catalysis.  相似文献   

7.
The synthesis and characterization of carboxylate-bridged dimetallic complexes are described. By using m-terphenyl-derived carboxylate ligands, a series of dicobalt(II), dicobalt(III), dinickel(II), and dizinc(II) complexes were synthesized. The compounds are [Co(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (1), [Co(2)(mu-OH(2))(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (2a-c), [Co(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (3), [Ni(2)(mu-O(2)CAr(Tol))(4)L(2)] (4), [Ni(2)(mu-HO...H)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (5), and [Zn(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (6), where Ar(Tol)CO(2)H = 2,6-di(p-tolyl)benzoic acid and L = pyridine, THF, or N,N-dibenzylethylenediamine. Structural analysis of these complexes revealed that additional bridging ligands can be readily accommodated within the [M(2)(mu-O(2)CAr(Tol))(2)](2+) core, allowing a wide distribution of M...M distances from 2.5745(6) to 4.0169(9) A. Unprecedented bridging units [M(2)(mu-OH(2))(2)(mu-O(2)CR)(2)](n+) and [M(2)(mu-HO...H)(2)(mu-O(2)CR)(2)](n+) were identified in 2a-c and 5, respectively, in which strong hydrogen bonding accommodates shifts of protons from bridging water molecules toward the dangling oxygen atoms of terminal monodentate carboxylate groups. Such a proton shift along the O...H...O coordinate attenuates the donor ability of the anionic carboxylate ligand, which can translate into increased Lewis acidity at the metal centers. Such double activation of bridging water molecules by a Lewis acidic metal center and a metal-bound general base may facilitate the reactivity of metallohydrolases such as methionine aminopeptidase (MAP).  相似文献   

8.
We describe the synthesis and dioxygen reactivity of diiron(II) tetracarboxylate complexes [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Me(2)en)(2)] (2) and [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(N,N-Bn(2)en)(2)] (6), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate. These complexes were prepared as models for the diiron(II) center in the hydroxylase component of soluble methane monooxygenase (MMOH). Compound 6 reacts with dioxygen to afford PhCHO in approximately 60(5)% yield, following oxidative N-dealkylation of the pendant benzyl group on the diamine ligand. The diiron(III) complex [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(O(2)CAr(Tol))(3)(N-Bnen)(N,N-Bn(2)en)] (8) was isolated from the reaction mixture. The 4.2 K M?ssbauer spectrum of 8 displays a single quadrupole doublet with parameters delta = 0.48(2) mm s(-1) and Delta E(Q) = 0.61(2) mm s(-1). The [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core structure in 8 matches that of the fully oxidized form of MMOH. The conversion of 6 to 8 closely parallels the chemistry of MMOH in which an O(2)-derived oxygen atom is inserted into the C-H bond of methane. Several reaction pathways are considered to account for this novel chemical transformation, and these are compared with mechanistic frameworks previously developed for related cytochrome P450 and copper(I) dioxygen chemistry.  相似文献   

9.
Carboxylate-bridged high-spin diiron(II) complexes with distinctive electronic transitions were prepared by using 4-cyanopyridine (4-NCC(5)H(4)N) ligands to shift the charge-transfer bands to the visible region of the absorption spectrum. This property facilitated quantitation of water-dependent equilibria in the carboxylate-rich diiron(II) complex, [Fe(2)(mu-O(2)CAr(Tol))(4)(4-NCC(5)H(4)N)(2)] (1), where (-)O(2)CAr(Tol) is 2,6-di-(p-tolyl)benzoate. Addition of water to 1 reversibly shifts two of the bridging carboxylate ligands to chelating terminal coordination positions, converting the structure from a paddlewheel to a windmill geometry and generating [Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)(H(2)O)(2)] (3). This process is temperature dependent in solution, rendering the system thermochromic. Quantitative treatment of the temperature-dependent spectroscopic changes over the temperature range from 188 to 298 K in CH(2)Cl(2) afforded thermodynamic parameters for the interconversion of 1 and 3. Stopped flow kinetic studies revealed that water reacts with the diiron(II) center ca. 1000 time faster than dioxygen and that the water-containing diiron(II) complex reacts with dioxygen ca. 10 times faster than anhydrous analogue 1. Addition of {H(OEt(2))(2)}{B}, where B(-) is tetrakis(3,5-di(trifluoromethyl)phenyl)borate, to 1 converts it to [Fe(2)(mu-O(2)CAr(Tol))(3)(4-NCC(5)H(4)N)(2)](B) (5), which was also structurally characterized. Mossbauer spectroscopic investigations of solid samples of 1, 3, and 5, in conjunction with several literature values for high-spin iron(II) complexes in an oxygen-rich coordination environment, establish a correlation between isomer shift, coordination number, and N/O composition. The products of oxygenating 1 in CH(2)Cl(2) were identified crystallographically to be [Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(4-NCC(5)H(4)N)(2)].2(HO(2)CAr(Tol)) (6) and [Fe(6)(mu-O)(2)(mu-OH)(4)(mu-O(2)CAr(Tol))(6)(4-NCC(5)H(4)N)(4)Cl(2)] (7).  相似文献   

10.
The synthesis, structural characterization, and NO reactivity of carboxylate-bridged dimetallic complexes were investigated. The diiron(II) complex [Fe(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (1), where O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Ds-pip = dansyl-piperazine, was prepared and determined by X-ray crystallography to have a paddlewheel geometry. This complex reacts with NO within 1 min with a concomitant 4-fold increase in fluorescence emission intensity ascribed to displacement of Ds-pip. Although the diiron complex reacts with NO, as revealed by infrared spectroscopic studies, its sensitivity to dioxygen renders it unsuitable as an atmospheric NO sensor. The air-stable dicobalt(II) analogue was also synthesized and its reactivity investigated. In solution, the dicobalt(II) complex exists as an equilibrium between paddlewheel [Co(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (2) and windmill [Co(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(Ds-pip)(2)] (3) geometric isomers. Conditions for crystallizing pure samples of each of these isomers are described. Reaction of 2 with excess NO proceeds by reductive nitrosylation giving [Co(mu-O(2)CAr(Tol))(2)(NO)(4)] (5), which is accompanied by release of the Ds-pip fluorophore that is N-nitrosated in the process. This reaction affords an overall 9.6-fold increase in fluorescence emission intensity, further demonstrating the potential utility of ligand dissociation as a strategy for designing fluorescence-based sensors to detect nitric oxide in a variety of contexts.  相似文献   

11.
A family of soluble, reduced iron-sulfur clusters with nuclearities 4, 8, and 16 having tertiary phosphine ligation and based on the Fe(4)S(4) cubane-type structural motif has been synthesized. The results of this investigation substantially extend and improve the results of our original work on iron-sulfur-phosphine clusters (Goh, C.; Segal, B. M.; Huang, J.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 11844). A general property of this cluster family is facile phosphine substitution. The clusters [Fe(4)S(4)(PR(3))(4)](+) are precursors to monosubstituted [Fe(4)S(4)(PR(3))(3)X] (X = Cl-, RS-), homoleptic [Fe(4)S(4)(SR)(4)](3-), and all-ferrous monocubanes [Fe(4)S(4)(PR(3))(4)] (R = Pr(i), Cy, Bu(t); generated in solution). In turn, [Fe(4)S(4)(PPr(i)()(3))(3)(SSiPh(3))] and [Fe(4)S(4)(PPr(i)(3))(4)] can be transformed into the dicubanes [Fe(8)S(8)(PPr(i)()(3))(4)(SSiPh(3))(2)] and [Fe(8)S(8)(PPr(i)((3))(6)], respectively. Further, the tetracubanes [Fe(16)S(16)(PR(3))(8)] are also accessible from [Fe(4)S(4)(PR(3))(4)] under different conditions. X-ray structures are described for [Fe(4)S(4)(PCy(3))(3)X] (X = Cl-, PhS-), [Fe(8)S(8)(PPr(i)(3))(4)(SSiPh(3))(2)], [Fe(8)S(8)(PPr(i)()(3))(6)], and [Fe(16)S(16)(PCy(3))(8)]. The monosubstituted clusters show different distortions of the [Fe(4)S(4)](+) cores from idealized cubic symmetry. The dicubanes possess edge-bridged double cubane structures with an Fe(2)(mu(4)-S)(2) bridge rhomb and idealized C(2)(h)() symmetry. The ready cleavage of these clusters into single cubanes is considered a probable consequence of strained bond angles at the mu(4)-S atoms. Tetracubanes contain four individual cubanes, each of which is implicated in two bridge rhombs so as to generate a cyclic structure of idealized D(4) symmetry. Redox properties and M?ssbauer spectroscopic parameters are reported. The species [Fe(4)S(4)(PR(3))(4)] (in solution), [Fe(8)S(8)(PR(3))(6)], and [Fe(16)S(16)(PR(3))(8)] are the only synthetic all-ferrous clusters with tetrahedral iron sites that have been isolated. Their utility as precursors to other highly reduced iron-sulfur clusters is under investigation.  相似文献   

12.
The reaction between equimolar amounts of Pt(3)(mu-PBu(t)()(2))(3)(H)(CO)(2), Pt(3)()H, and CF(3)SO(3)H under CO atmosphere affords the triangular species [Pt(3)(mu-PBu(t)()(2))(3)(CO)(3)]X, [Pt(3)()(CO)(3)()(+)()]X (X = CF(3)SO(3)(-)), characterized by X-ray crystallography, or in an excess of acid, [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)]X(2), [Pt(6)()(2+)()]X(2)(). Structural determination shows the latter to be a rare hexanuclear cluster with a Pt(4) tetrahedral core formed by joining the unbridged sides of two orthogonal Pt(3) triangles. The dication Pt(6)()(2+)() features also extensive redox properties as it undergoes two reversible one-electron reductions to the congeners [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)](+) (Pt(6)()(+)(), E(1/2) = -0.27 V) and Pt(6)(mu-PBu(t)()(2))(4)(CO)(6) (Pt(6)(), E(1/2) = -0.54 V) and a further quasi-reversible two-electron reduction to the unstable dianion Pt(6)()(2)()(-)() (E(1/2) = -1.72 V). The stable radical (Pt(6)()(+)()) and diamagnetic (Pt(6)()) species are also formed via chemical methods by using 1 or 2 equiv of Cp(2)Co, respectively; further reduction of Pt(6)()(2+)() causes fast decomposition. The chloride derivatives [Pt(6)(mu-PBu(t)()(2))(4)(CO)(5)Cl]X, (Pt(6)()Cl(+)())X, and Pt(6)(mu-PBu(t)()(2))(4)(CO)(4)Cl(2), Pt(6)()Cl(2)(), observed as side-products in some electrochemical experiments, were prepared independently. The reaction leading to Pt(3)()(CO)(3)()(+)() has been analyzed with DFT methods, and identification of key intermediates allows outlining the reaction mechanism. Moreover, calculations for the whole series Pt(6)()(2+)() --> Pt(6)()(2)()(-)()( )()afford the otherwise unknown structures of the reduced derivatives. While the primary geometry is maintained by increasing electron population, the system undergoes progressive and concerted out-of-plane rotation of the four phosphido bridges (from D(2)(d)() to D(2) symmetry). The bonding at the central Pt(4) tetrahedron of the hexanuclear clusters (an example of 4c-2e(-) inorganic tetrahedral aromaticity in Pt(6)()(2+)()) is explained in simple MO terms.  相似文献   

13.
Multidentate naphthyridine-based ligands were used to prepare a series of diiron(II) complexes. The compound [Fe(2)(BPMAN)(mu-O(2)CPh)(2)](OTf)(2) (1), where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine, exhibits two reversible oxidation waves with E(1/2) values at +310 and +733 mV vs Cp(2)Fe(+)/Cp(2)Fe, as revealed by cyclic voltammetry. Reaction with O(2) or H(2)O(2) affords a product with optical and M?ssbauer properties that are characteristic of a (mu-oxo)diiron(III) species. The complexes [Fe(2)(BPMAN)(mu-OH)(mu-O(2)CAr(Tol))](OTf)(2) (2) and [Fe(2)(BPMAN)(mu-OMe)(mu-O(2)CAr(Tol))](OTf)(2) (3) were synthesized, where Ar(Tol)CO(2)(-) is the sterically hindered ligand 2,6-di(p-tolyl)benzoate. Compound 2 has a reversible redox wave at +11 mV, and both 2 and 3 react with O(2), via a mixed-valent Fe(II)Fe(III) intermediate, to give final products that are also consistent with (mu-oxo)diiron(III) species. The paddle-wheel compound [Fe(2)(BBAN)(mu-O(2)CAr(Tol))(3)](OTf) (4), where BBAN = 2,7-bis(N,N-dibenzylaminomethyl)-1,8-naphthyridine, reacts with dioxygen to yield benzaldehyde via oxidative N-dealkylation of a benzyl group on BBAN, an internal substrate. In the presence of bis(4-methylbenzyl)amine, the reaction also produces p-tolualdehyde, revealing oxidation of an external substrate. A structurally related compound, [Fe(2)(BEAN)(mu-O(2)CAr(Tol))(3)](OTf) (5), where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine, does not undergo N-dealkylation, nor does it facilitate the oxidation of bis(4-methylbenzyl)amine. The contrast in reactivity of 4 and 5 is attributed to a difference in accessibility of the substrate to the diiron centers of the two compounds. The M?ssbauer spectroscopic properties of the diiron(II) complexes were also investigated.  相似文献   

14.
The asymmetric terphenyl-2'-carboxylate ligand 3,5-dimethyl-1,1':3',1' '-terphenyl-2'-carboxylate, -O2CArPh,Xyl, was prepared in high yield. This ligand facilitates the assembly of the diiron(II) complexes [Fe2(micro-O2CArTol)2(O2CArPh,Xyl)2(THF)2] [2, -O2CArTol=2,6-di-p-tolylbenzoate], [Fe2(micro-O2CArTol)2(O2CArPh,Xyl)2(pyridine)2] (5), [Fe2(micro-O2CArPh,Xyl)2-(O2CArPh,Xyl)2(THF)2] (3), and [Fe2(micro-O2CArPh,Xyl)2(O2CArPh,Xyl)2(pyridine)2] (6), all of which have a windmill geometry. The iron-iron distance of 3.355[10] A in 6 is approximately 1 A shorter than that in the analogue [Fe2(micro-O2CArTol)2(O2CArTol)2(pyridine)2] (4) and similar to the approximately 3.3 A metal-metal separation at the active site of the reduced diiron(II) form of the soluble methane monooxygenase hydroxylase enzyme (MMOHred). A series of ortho-substituted picolyl-based ligands, 2-picSMe, 2-picSEt, 2-picStBu, 2-picSPh, 2-picSPh(Me3) (Ph(Me3)=mesityl), and 2-picSPh(iPr3) (Ph(iPr3)=2,4,6-triisopropylphenyl), were prepared and allowed to react with [Fe2(micro-O2CAr)2(O2CAr)2(THF)2] to produce [Fe2(micro-O2CAr)3(O2CAr)(picSR)] (7-13, Ar=ArTol or ArPh,Xyl) complexes in 45-87% yields. The substrates tethered to the pyridine N-donor ligands picSR, where R=Me, Et, tBu, or Ph, coordinate to one iron atom of the diiron(II) center by the nitrogen and sulfur atoms to form a five-membered chelate ring. The Fe-S distance be-comes elongated with increasing steric hindrance imparted by the R group. The most sterically hindered ligands, 2-picSPh(Me3) and 2-picSPh(iPr3), bind to the metal only through the pyridine nitrogen atom. The reactions of several of these complexes with dioxygen were investigated, and the oxygenated products were analyzed by 1H NMR spectroscopy and GC/MS measurements following decomposition on a Chelex resin. The amount of sulfoxidation product is correlated with the Fe...S distance. The ratio of oxidized to unoxidized thioether substrate varies from 3.5, obtained upon oxygenation of the weakly coordinated 2-picSPh ligand in 10, to 1.0, obtained for the bulky 2-picSPh(iPr3) ligand in 12, for which the iron-sulfur distance is >4 A. External thioether substrates were not oxidized when present in oxygenated solutions of paddlewheel and windmill diiron(II) complexes containing 1-methylimidazole or pyridine ligands, respectively.  相似文献   

15.
The electronic structures of complexes of iron containing two S,S'-coordinated benzene-1,2-dithiolate, (L)(2)(-), or 3,5-di-tert-butyl-1,2-benzenedithiolate, (L(Bu))(2)(-), ligands have been elucidated in depth by electronic absorption, infrared, X-band EPR, and Mossbauer spectroscopies. It is conclusively shown that, in contrast to earlier reports, high-valent iron(IV) (d(4), S = 1) is not accessible in this chemistry. Instead, the S,S'-coordinated radical monoanions (L(*))(1)(-) and/or (L(Bu)(*))(1)(-) prevail. Thus, five-coordinate [Fe(L)(2)(PMe(3))] has an electronic structure which is best described as [Fe(III)(L)(L(*))(PMe(3))] where the observed triplet ground state of the molecule is attained via intramolecular, strong antiferromagnetic spin coupling between an intermediate spin ferric ion (S(Fe) = (3)/(2)) and a ligand radical (L(*))(1)(-) (S(rad) = (1)/(2)). The following complexes containing only benzene-1,2-dithiolate(2-) ligands have been synthesized, and their electronic structures have been studied in detail: [NH(C(2)H(5))(3)](2)[Fe(II)(L)(2)] (1), [N(n-Bu)(4)](2)[Fe(III)(2)(L)(4)] (2), [N(n-Bu)(4)](2)[Fe(III)(2)(L(Bu))(4)] (3); [P(CH(3))Ph(3)][Fe(III)(L)(2)(t-Bu-py)] (4) where t-Bu-py is 4-tert-butylpyridine. Complexes containing an Fe(III)(L(*))(L)- or Fe(III)(L(Bu))(L(Bu)(*))- moiety are [N(n-Bu)(4)][Fe(III)(2)(L(Bu))(3)(L(Bu)(*))] (3(ox)()), [Fe(III)(L)(L(*))(t-Bu-py)] (4(ox)()), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))] (7), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))(2)] (8), and [Fe(III)(L(Bu))(L(Bu)(*))(PPr(3))] (9), where Pr represents the n-propyl substituent. Complexes 2, 3(ox)(), 4, [Fe(III)(L)(L(*))(PMe(3))(2)] (6), and 9 have been structurally characterized by X-ray crystallography.  相似文献   

16.
The syntheses, structures and magnetic properties of six iron complexes stabilised with the derivatised salicylaldoxime ligands Me-saoH(2) (2-hydroxyethanone oxime) and Et-saoH(2) (2-hydroxypropiophenone oxime) are discussed. The four hexanuclear and two octanuclear complexes of formulae [Fe(8)O(2)(OMe)(4)(Me-sao)(6)Br(4)(py)(4)]·2Et(2)O·MeOH (1·2Et(2)O·MeOH), [Fe(8)O(2)(OMe)(3.85)(N(3))(4.15)(Me-sao)(6)(py)(2)] (2), [Fe(6)O(2)(O(2)CPh-4-NO(2))(4)(Me-sao)(2)(OMe)(4)Cl(2)(py)(2)] (3), [Fe(6)O(2)(O(2)CPh-4-NO(2))(4)(Et-sao)(2)(OMe)(4)Cl(2)(py)(2)]·2Et(2)O·MeOH (4·2Et(2)O·MeOH), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (5) and [HNEt(3)](2)[Fe(6)O(2)(Et-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (6) all are built from a series of edge-sharing [Fe(4)(μ(4)-O)](10+) tetrahedra. Complexes 1 and 2 display a new μ(4)-coordination mode of the oxime ligand and join a small group of Fe-phenolic oxime complexes with nuclearity greater than six.  相似文献   

17.
The square planar, light-green, diamagnetic complex [N(n-Bu)(4)][Au(III)(L(t)()(-)(Bu))(2)] (1) reacts with iodine in acetone affording the neutral paramagnetic species [Au(L(t)()(-)(Bu))(2)] (1a) (S = (1)/(2)) where H(2)[L(t)()(-)(Bu)] represents the ligand 3,5-di-tert-butyl-1,2-benzenedithiol. The corresponding complexes containing the unsubstituted ligand H(2)[L], 1,2-benzenedithiol, namely [N(n-Bu)(3)H][Au(L)(2)] (2) and [Au(L)(2)] (2a), have also been prepared and characterized by X-ray crystallography; the structure of the latter has been reported in ref 10. (197)Au M?ssbauer spectra of 1 and 1a clearly show that the one-electron oxidation is ligand-centered and does not involve the formation of Au(IV) (d(7)). The spectroscopic features of the ligand mixed-valent species 1a were determined by UV-vis, EPR, and IR spectroscopy which allows the detection of S,S-coordinated 1,2-dithiobenzosemiquinonate(1-) radicals in coordination compounds.  相似文献   

18.
The coordination chemistry of the ligands o-aminothiophenol, H(abt), 4,6-di-tert-butyl-2-aminothiophenol, H[L(AP)], and 1,2-ethanediamine-N,N'-bis(2-benzenethiol), H(4)('N(2)S(2')), with FeCl(2) under strictly anaerobic and increasingly aerobic conditions has been systematically investigated. Using strictly anaerobic conditions, the neutral, air-sensitive, yellow complexes (mu-S,S)[Fe(II)(abt)(2)](2) (1), (mu-S,S)[Fe(II)(L(AP))(2)](2).8CH(3)OH (2), and (mu-S,S)[Fe(II)('H(2)N(2)S(2'))](2).CH(3)CN (3) containing high spin ferrous ions have been isolated where (abt)(1-), (L(AP))(1-), and ('H(2)N(2)S(2'))(2-) represent the respective N,S-coordinated, aromatic o-aminothiophenolate derivative of these ligands. When the described reaction was carried out in the presence of trace amounts of O(2) and [PPh(4)]Br, light-green crystals of [PPh(4)][Fe(II)(abt)(2)(itbs)].[PPh(4)]Br (4) were isolated. The anion [Fe(II)(abt)(2)(itbs)](-) contains a high spin ferrous ion, two N,S-coordinated o-aminophenolate(1-) ligands, and an S-bound, monoanionic o-iminothionebenzosemiquinonate(1-) pi radical, (itbs)(-). Complex 4 possesses an S(t) = 3/2 ground state. In the absence of [PPh(4)]Br and presence of a base NEt(3) and a little O(2), the ferric dimer (mu-NH,NH)[Fe(III)(L(AP))(L(IP))](2) (5a) and its isomer (mu-S,S)[Fe(III)(L(AP))(L(IP))](2) (5b) formed. (L(IP))(2-) represents the aromatic o-iminothiophenolate(2-) dianion of H[L(AP)]. The structures of compounds 2, 4, and 5a have been determined by X-ray crystallography at 100(2) K. Zero-field M?ssbauer spectroscopy of 1, 2, 3, and 4 unambiguously shows the presence of high spin ferrous ions: The isomer shift at 80 K is in the narrow range 0.85-0.92 mm s(-1), and a large quadrupole splitting, |DeltaE(Q)|, in the range 3.24-4.10 mm s(-1), is observed. In contrast, 5a and 5b comprise both intermediate spin ferric ions (S(Fe) = 3/2) which couple antiferromagnetically in the dinuclear molecules yielding an S(t) = 0 ground state.  相似文献   

19.
The protonation of [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNO)] (1) with HBF(4) occurs at the oxygen of the noncoordinating side of the trans-hyponitrite ligand to give [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOH)][BF(4)] (2) in good yield. The monoprotonated hyponitrite in 2 is deprotonated easily by strong bases to regenerate 1. Furthermore, 1 reacts with the methylating reagent [Me(3)O][BF(4)] to afford [Ru(2)(CO)(4)(mu-H)(mu-PBu(t)()(2))(mu-dppm)(mu-eta(2)-ONNOMe)][BF(4)] (3). The molecular structures of 2 and 3 have been determined crystallographically, and the structure of 2 is discussed with the results of the DFT/B3LYP calculations on the model complex [Ru(2)(CO)(4)(mu-H)(mu-PH(2))(mu-H(2)PCH(2)PH(2))(mu-eta(2)-ONNOH)](+) (2a). Moreover, the thermolysis of 2 in ethanol affords [Ru(2)(CO)(4)(mu-H)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)][BF(4)] (4) in high yield, and the deprotonation of 4 by DBU in THF yields the novel complex [Ru(2)(CO)(4)(mu-OH)(mu-PBu(t)()(2))(mu-dppm)] (5).  相似文献   

20.
While the reaction of [PW(11)O(39)](7-) with first row transition-metal ions M(n+) under usual bench conditions only leads to monosubstituted {PW(11)O(39)M(H(2)O)} anions, we have shown that the use of this precursor under hydrothermal conditions allows the isolation of a family of novel polynuclear discrete magnetic polyoxometalates (POMs). The hybrid asymmetric [Fe(II)(bpy)(3)][PW(11)O(39)Fe(2) (III)(OH)(bpy)(2)]12 H(2)O (bpy=bipyridine) complex (1) contains the dinuclear {Fe(micro-O(W))(micro-OH)Fe} core in which one iron atom is coordinated to a monovacant POM, while the other is coordinated to two bipyridine ligands. Magnetic measurements indicate that the Fe(III) centers in complex 1 are weakly antiferromagnetically coupled (J=-11.2 cm(-1), H=-JS(1)S(2)) compared to other {Fe(micro-O)(micro-OH)Fe} systems. This is due to the long distances between the iron center embedded in the POM and the oxygen atom of the POM bridging the two magnetic centers, but also, as shown by DFT calculations, to the important mixing of bridging oxygen orbitals with orbitals of the POM tungsten atoms. The complexes [Hdmbpy](2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]14 H(2)O (2) (dmbpy=5,5'-dimethyl-2,2'-bipyridine) and H(2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]10 H(2)O (3) represent the first butterfly-like POM complexes. In these species, a tetranuclear Fe(III) complex is sandwiched between two lacunary polyoxotungstates that are pentacoordinated to two Fe(III) cations, the remaining paramagnetic centers each being coordinated to two dmbpy ligands. The best fit of the chi(M)T=f(T) curve leads to J(wb)=-59.6 cm(-1) and J(bb)=-10.2 cm(-1) (H=-J(wb)(S(1)S(2)+S(1)S(2*)+S(1*)S(2)+S(1*)S(2*))-J(bb)(S(2)S(2*))). While the J(bb) value is within the range of related exchange parameters previously reported for non-POM butterfly systems, the J(wb) constant is significantly lower. As for complex 1, this can be justified considering Fe(w)--O distances. Finally, in the absence of a coordinating ligand, the dimeric complex [N(CH(3))(4)](10)[(PW(11)O(39)Fe(III))(2)O]12 H(2)O (4) has been isolated. In this complex, the two single oxo-bridged Fe(III) centers are very strongly antiferromagnetically coupled (J=-211.7 cm(-1), H=-JS(1)S(2)). The electrochemical behavior of compound 1 both in dimethyl sulfoxide (DMSO) and in the solid state is also presented, while the electrochemical properties of complex 2, which is insoluble in common solvents, have been studied in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号