首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stabilization of AgI nanocrystals with dodecanethiol (DDT) and thioglycerol (TGC) in AOT reverse micelles was studied. It was established that water-soluble TGC stabilizes nanocrystals in micelle water pools, while hydrophobic DDT, in organic phase of micellar solution. Optimal values of [Ag+]/[thiol] molar ratio needed to synthesize the nanocrystals with minimal size were determined: this value varied from 1 : 10 to 1 : 50 in the case of DDT and was equal to 1 : 0.3 in the case of TGC. It was found that final nanocrystal size depended both on the amount of thiol and on the moment of its addition to microemulsion. Variations in these parameters made it possible to synthesize nanocrystals of various sizes. It was shown that AgI nanocrystals stabilized with thiol could be separated from micelles with no changes in their size.  相似文献   

2.
A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.  相似文献   

3.
In this paprr we are presenting the synthesss “in situ” of nanoparticles in reverse micelles. In the case of aggregates containing copper ions, it is possible to form metallic particles surrounded or not by an oxide layer. By mixing aggregates containing cadmium and sulphide ions, CdS particles are formed. The size and polydispersity of the particles are controlled. The photoelectron transfer reaction depends mainly on the surface composition. In the range of 1 to 5 nm, the efficiency in the electron transfer does not depend on the size of the particle. The reverse micelles are formed by using either sodium di(2-ethyl hexyl)sulfosuccinate, usually called {AOT} or mixed bivalent and sodium di(2-ethyl hexyl)sulfosuccinate {AOl/M(AOT)2}.  相似文献   

4.
表面活性剂对纳米CaCO3形貌的调控   总被引:1,自引:7,他引:1  
分别在AOT/异辛烷/水、CTAB/环己烷/水和OP-10/环己烷/水三种不同的反胶束体系中合成出具有不同形貌的纳米碳酸钙,讨论了表面活性剂的类型以及溶剂热过程对纳米碳酸钙的形貌及尺寸的影响.  相似文献   

5.
The recombination of thiocyanate anion radicals, (SCN) 2 , formed pulse radiolytically within the water pools of reverse micelles stabilized with anionic AOT and nonionic Igepal surfactants, was proved as an indicator reaction to study intermicellar exchange. It was found that the exchange process is slower inIgepal than in AOT reverse micelles with the same water to surfactant ratio. The apparent activation enthalpy and entropy of the exchange process were determined in different alkanes. For the AOT and Igepal reverse micelles the activation parameters increase with the droplet size, but for the AOT systems they do not significantly change with the increase of droplet concentration. For non-percolated systems the activation parameters for Igepal reverse micelles approach those for AOT reverse micelles. This result supports existing suggestions that the mechanism of intermicellar exchange does not differ in principle between reverse micelles stabilized with ionic and nonionic surfactants.  相似文献   

6.
We have synthesized copper-gold, core-shell nanoparticles by the microemulsion method. The particles were prepared in two steps, by first reducing copper ions and then gold ions in the aqueous domains of anionic microemulsions. Two surfactants have been used as emulsifiers, AOT and Cu(AOT)2. The latter is the source of copper ions. Gold ions come from aqueous solutions of HAuCl4. Ultraviolet-visible spectroscopy experiments show that copper nanoparticles are created in the first step of the synthesis, and that a gold layer covers them in the second step. Transmission electron microscopy and related techniques confirm the formation of copper (core)-gold (shell) nanocrystals.  相似文献   

7.
Copper nanocrystals are obtained by chemical reduction of copper ions in mixed reverse micelles. A large excess of reducing agent favors producing a new generation of shaped copper nanocrystals as nanodisks, elongated nanocrystals, and cubes. By using UV-Visible spectroscopy and numerical optical simulations we demonstrate that the optical properties are tuned by the relative proportions of spheres and nanodisks.  相似文献   

8.
In the chemical reduction of copper ions in mixed reverse micelles it is found that a large excess of reducing agent favors the production of a new generation of copper nanocrystals. At low reducing agent concentration, nanocrystals are mostly spherical, while in the supersaturated regime, they have various shapes such as pentagons, squares, triangles, and elongated forms. The nanocrystal structures, characterized by high-resolution transmission electron microscopy, are based on the face-centered cubic structure. A tentative explanation for the growth mechanism of copper nanocrystals having various shapes is proposed.  相似文献   

9.
The effects of two trihydroxy bile salts, sodium taurocholate (NaTC) and 3-[(3-cholamidylpropyl)dimethylammonio]-1-propane sulfonate (CHAPS), on the size, shape and percolation temperature of reversed micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane were studied. The percolation temperature of the reversed micelles decreased upon inclusion of bile salts, indicating increased water uptake. Dynamic light scattering (DLS) measurements showed consistent enlargement of reversed micelles upon addition of the bile salts; the hydrodynamic radius increased sixfold in the presence of 10 mM CHAPS and doubled in the presence of 5 mM NaTC. Inclusion of the enzyme yeast alcohol dehydrogenase (YADH) increased the percolation temperature and distorted the spherical structure of the AOT reversed micelles. The spherical structure was restored upon addition of bile salt. These results may help to explain the increase in activity of YADH in AOT reversed micelles upon addition of bile salts.  相似文献   

10.
Mesoscopic patterns of cobalt nanocrystals produced by applying a magnetic field perpendicular to the substrate during the deposition process are presented. These mesoscopic patterns markedly differ with the size distribution of the cobalt nanocrystals. Well-defined columns are produced when the size distribution of cobalt nanocrystals is low; conversely, the coalescence of columns with formations of labyrinths occurs for a large size distribution. A formation mechanism of these structures is proposed.  相似文献   

11.
反相胶束对辣根过氧化物酶催化反应的影响   总被引:3,自引:0,他引:3  
陈建波  夏春谷 《分子催化》1999,13(6):453-456
胶束体系是酶学研究比较理想的体系,因为它所具有的诸如热力学稳定、光学透明及能增溶亲水分子、亲油分子或两性分子等性质,使许多酶在胶束体系中的反应速率远远高于在水相中,即人们发现的所谓“超活性”[‘j.辣根过氧化物酶(HRP)是一种比较稳定的酶,且价廉易得,具备一般过氧化物酶的典型反应.在研究中人们发现,HRP在反相胶束体系中同样具有“超活性”,由于HRP能够催化大量底物进行反应,因此“超活性”对HRP的催化反应具有重要意义.已有研究者[’、’j对CTAB反相胶束体系中HRP的性质进行了探讨,但反相胶束对HRP的…  相似文献   

12.
Water dynamics--the effects of ions and nanoconfinement   总被引:1,自引:0,他引:1  
Hydrogen bond dynamics of water in highly concentrated NaBr salt solutions and reverse micelles are studied using ultrafast 2D-IR vibrational echo spectroscopy and polarization-selective IR pump-probe experiments performed on the OD hydroxyl stretch of dilute HOD in H(2)O. The vibrational echo experiments measure spectral diffusion, and the pump-probe experiments measure orientational relaxation. Both experimental observables are directly related to the structural dynamics of water's hydrogen bond network. The measurements performed on NaBr solutions as a function of concentration show that the hydrogen bond dynamics slow as the NaBr concentration increases. The most pronounced change is in the longest time scale dynamics which are related to the global rearrangement of the hydrogen bond structure. Complete hydrogen bond network randomization slows by a factor of approximately 3 in approximately 6 M NaBr solution compared to that in bulk water. The hydrogen bond dynamics of water in nanoscopically confined environments are studied by encapsulating water molecules in ionic head group (AOT) and nonionic head group (Igepal CO 520) reverse micelles. Water dynamics in the nanopools of AOT reverse micelles are studied as a function of size by observing orientational relaxation. Orientational relaxation dynamics deviate significantly from bulk water when the size of the reverse micelles is smaller than several nm and become nonexponential and slower as the size of the reverse micelles decreases. In the smallest reverse micelles, orientational relaxation (hydrogen bond structural randomization) is almost 20 times slower than that in bulk water. To determine if the changes in dynamics from bulk water are caused by the influence of the ionic head groups of AOT or the nanoconfinement, the water dynamics in 4 nm nanopools in AOT reverse micelles (ionic) and Igepal reverse micelles (nonionic) are compared. It is found that the water orientational relaxation in the 4 nm diameter nanopools of the two types of reverse micelles is almost identical, which indicates that confinement by an interface to form a nanoscopic water pool is a primary factor governing the dynamics of nanoscopic water rather than the presence of charged groups at the interface.  相似文献   

13.
Dynamic light scattering and Cryo-TEM measurements have allowed us to obtain the size and structure of spontaneous aggregates formed by mixtures of Aerosol OT, AOT, and ethylene glycol polymers of different molecular mass. The results presented in this work show that small unilamellar vesicles predominate in pure Aerosol OT solutions and in dilute polymer solutions mixed with AOT. In the latter case, elongated micelles coexist with unilamellar vesicles. When polymer concentration increases above a certain concentration, the small vesicles disappear and the size of the elongated micelles decreases to a radius compatible with spherical micelles. For PEG concentrations above the overlapping ones, spherical micelles coexist with very large aggregates probably formed by large rod like micelles or by superstructures of elongated micelles embedded in a polymer network. This behavior is consistent with theoretical models based in molecular mean-field theory [M. Rovira-Bru, D.H. Thompson, I. Szleifer, Biophys. J. 83 (2002) 2419]. The properties of the different types of aggregates are obtained by fluorescence spectroscopy and electrophoretic mobility measurements.  相似文献   

14.
Reversed micelles can control the size of water pools and the physical property of water by changing W(0)(=[water]/[surfactant]). Hexokinase (HK) activity seems to be easily affected by the microenvironment in the neighborhood of the enzyme because it is assumed that HK binds to the outer mitochondrial membrane by insertion of its hydrophobic NH(2) tail. The catalytic activity of HK was examined in reversed micelles in order to study the effect of the microenvironment in the neighborhood of HK on the activity. Sodium bis(2-ethylhexyl)sulfosuccinate (AOT), hexadecyltrimethyl ammonium chloride (HTAC), and octaoxyethylene dodecyl ether (C(12)E(8)) were used as anionic, cationic, and nonionic surfactants, respectively. HK activity was obtained by measuring ATP and ADP amounts with HPLC. The high electrostatic inner surfaces of AOT and HTAC reversed micelles were not favorable for HK to exhibit the catalytic activity, but the activity in HTAC reversed micelles was 2-3 times higher than that in AOT reversed micelles and the activities in both reversed micelles revealed an optimum at W(0)=10. The phenomenon was discussed in connection with the location of HK, nonuniform distribution of substrates, and the size and physical properties of the water pools. On the other hand, HK activity was much higher in C(12)E(8) reversed micelles than in AOT and HTAC reversed micelles and increased with the concentration of C(12)E(8). This suggests that HK activity is easily revealed in hydrated ethylene oxide chains. In conclusion, it was demonstrated that HK activity depends on the microenvironment such as the electrostatic field, the physical properties of water, and the hydrophobicity. Copyright 2001 Academic Press.  相似文献   

15.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

16.
The interior water pool of aerosol OT (AOT) reverse micelles tends toward bulk water properties as the micelle size increases. Thus, deviations from bulk water behavior in large reverse micelles are less expected than in small reverse micelles. Probing the interior water pool of AOT reverse micelles with a highly charged decavanadate (V(10)) oligomer using (51)V NMR spectroscopy shows distinct changes in solute environment. For example, when an acidic stock solution of protonated V(10) is placed in a reverse micelle, the (51)V chemical shifts show that the V(10) is deprotonated consistent with a decreased proton concentration in the intramicellar water pool. Results indicate that a proton gradient exists inside the reverse micelles, leaving the interior neutral while the interfacial region is acidic.  相似文献   

17.
Seven-nanometer cobalt nanocrystals are synthesized by colloidal chemistry. Gentle annealing induces a direct structural transition from a low crystalline state to the hexagonal close packed (hcp) phase without changing the size, size distribution, and the lauric acid passivating layer. The hcp structured nanocrystals can be easily redispersed in solvent for further application and processing. We found that the magnetization at saturation and the magnetic anisotropy are strongly modified through the annealing process. Monolayer self-assembly of the hcp cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. This work demonstrates a novel approach for obtaining small size hcp structured cobalt magnetic nanocrystals for many technological applications.  相似文献   

18.
The structural effect of trehalose confined in water-containing sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles at water to AOT molar ratio W = 5 and 10 as a function of the trehalose to AOT molar ratio T (0 < T < 0.1) has been investigated by small-angle neutron scattering (SANS). SANS data analysis is consistent with the hypothesis that trehalose is encapsulated within the quite spherical hydrophilic micellar cores of water-containing reversed micelles, causing an increase of the aggregate size and a decrease of the polydispersion. Moreover, SANS results suggest that the trehalose confinement in water-containing reversed micelles involves marked changes on the molecular packing of the water-containing micellar cores. In particular, according to the obtained findings, we can hypothesize the intercalation of the trehalose molecules between the polar surfactant headgroups. The preferential solubilization in this specific nanodomain could explain the trehalose capability to prevent, upon dehydration, the transition to a gel phase, hindering serious damage to biostructures.  相似文献   

19.
The properties of confined water and diffusive proton-transfer kinetics in the nanoscopic water channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series of well-characterized AOT reverse micelles with known water nanopool sizes using the photoacid pyranine as a molecular probe. The side chains of Nafion are terminated by sulfonate groups with sodium counterions that are arrayed along the water channels. AOT has sulfonate head groups with sodium counterions that form the interface with the reverse micelle's water nanopool. The extent of excited-state deprotonation is observed by steady-state fluorescence measurements. Proton-transfer kinetics and orientational relaxation are measured by time-dependent fluorescence using time-correlated single photon counting. The time dependence of deprotonation is related to diffusive proton transport away from the photoacid. The fluorescence reflecting the long time scale proton transport has an approximately t-0.8 power law decay in contrast to bulk water, which has a t-3/2 power law. For a given hydration level of Nafion, the excited-state proton transfer and the orientational relaxation are similar to those observed for a related size AOT water nanopool. The effective size of the Nafion water channels at various hydration levels are estimated by the known size of the AOT reverse micelles that display the corresponding proton-transfer kinetics and orientational relaxation.  相似文献   

20.
Dynamic light scattering and NMR spectroscopic experimental evidence suggest the coexistence of two compositionally different self-assembled particles in solution. The self-assembled particles form in solutions containing water, Aerosol OT (AOT, sodium bis(2-ethylhexyl) sulfosuccinate) surfactant, and cholesterol in cyclohexane. In a similar series of studies carried out in 1-octanol only one aggregate type, that is, reverse micelles, is observed. Dynamic light scattering measurements reveal the presence of two different types of aggregates in the microemulsions formed in cyclohexane, demonstrating the coexistence of two compositionally distinct structures with very similar Gibbs energies. One particle type consists of standard AOT reverse micelles while the second type of particle consists of submicellar aggregates including cholesterol as well as small amounts of AOT and water. In microemulsions employing 1-octanol as the continuous medium, AOT reverse micelles form in a dispersed solution of cholesterol in 1-octanol. Although the size distribution of self-assembled particles is well-known for many different systems, evidence for simultaneous formation of two distinctly sized particles in solution that are chemically different is unprecedented. The ability to form microemulsion solutions that contain coexisting particles may have important applications in drug formulation and administration, particularly as applied to drug delivery using cholesterol as a targeting agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号