首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NMR structures of protein-protein and protein-ligand complexes rely heavily on intermolecular NOEs. Recent work has shown that if no significant conformational changes occur upon complex formation residual dipolar coupling can replace most of the NOE restraints in protein-protein complexes, while restraints derived from chemical shift perturbations can largely replace intermolecular NOEs in protein-ligand structures. By combining restraints from chemical shift perturbations with orientation restraints derived from measurements of residual dipolar couplings, we show that the structure of the EIN-HPr complex can be calculated without NOE restraints. The final structure, built from the crystal structures of EIN and HPr in their uncomplexed form and docked only with NMR restraints, places HPr within 2.5 A of the position determined from the mean NMR structure of the complex.  相似文献   

3.
By employing a modified protocol of the Molecular Mechanics with Poisson-Boltzmann Surface Area (MM-PBSA) methodology we substantially decrease the required computation time for calculating relative estimates of protein-ligand binding affinities. The modified method uses a generalized Born implicit solvation model during molecular dynamics to enhance conformational sampling as well as a very efficient Poisson-Boltzmann solver and a computational design based on a distributed-computing paradigm. This construction allows for reduction of the computational cost of the calculations by roughly 2 orders of magnitude compared to the traditional formulation of MM-PBSA. With this high-throughput version of MM-PBSA we show that one can produce efficient physics-based estimates of relative binding free energies with reasonable correlation to experimental data and a total computation time that is sufficiently low such that an industrially relevant throughput can be realized given currently accessible computing resources. We demonstrate this approach by performing a comparison of different MM-PBSA implementations on a set of 18 ligands for the protein target urokinase.  相似文献   

4.
The throughput of a previously described NMR-based -assay has been increased by a factor of at least 4 as a consequence of adapting the system to chemical shift imaging; by using a 19-capillary system the enantiomeric purity of 5600 samples can be measured per day.  相似文献   

5.
Rapid, accurate structure determination of protein-ligand complexes is an essential component in structure-based drug design. We have developed a method that uses NMR protein chemical shift perturbations to spatially localize a ligand when it is complexed with a protein. Chemical shift perturbations on the protein arise primarily from the close proximity of electron current density from the ligand. In our approach the location of the center of the electron current density for a ligand aromatic ring was approximated by a point-dipole, and dot densities were used to represent ligand positions that are allowed by the experimental data. The dot density is increased in the region of space that is consistent for the most data. A surface can be formed in regions of the highest dot density that correlates to the center of the ligand aromatic ring. These surfaces allow for the rapid evaluation of ligand binding, which is demonstrated on a model system and on real data from HCV NS3 protease and HCV NS3 helicase, where the location of ligand binding can be compared to that obtained from difference electron density from X-ray crystallography.  相似文献   

6.
We have calculated proton chemical shift perturbations (CSPs) of retinol in the cellular retinol-binding protein (CRBP) through the use of a recently developed computational approach (Wang et al. J. Chem. Phys. 2004, 120, 11392-11400). Excellent agreement with experimental values was obtained for the X-ray structure, whereas the lack of a key hydrogen bond and the distorted isoprene tail of retinol for some NMR models lead to large CSP RMSDs. Therefore, a comparison of computed CSPs of retinol with experiment offers a convenient way to validate the structure of retinol and its orientation in the binding site for the NMR structures.  相似文献   

7.
Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 ?. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).  相似文献   

8.
Protein–ligand docking techniques are one of the essential tools for structure‐based drug design. Two major components of a successful docking program are an efficient search method and an accurate scoring function. In this work, a new docking method called LigDockCSA is developed by using a powerful global optimization technique, conformational space annealing (CSA), and a scoring function that combines the AutoDock energy and the piecewise linear potential (PLP) torsion energy. It is shown that the CSA search method can find lower energy binding poses than the Lamarckian genetic algorithm of AutoDock. However, lower‐energy solutions CSA produced with the AutoDock energy were often less native‐like. The loophole in the AutoDock energy was fixed by adding a torsional energy term, and the CSA search on the refined energy function is shown to improve the docking performance. The performance of LigDockCSA was tested on the Astex diverse set which consists of 85 protein–ligand complexes. LigDockCSA finds the best scoring poses within 2 Å root‐mean‐square deviation (RMSD) from the native structures for 84.7% of the test cases, compared to 81.7% for AutoDock and 80.5% for GOLD. The results improve further to 89.4% by incorporating the conformational entropy. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

9.
We present a new method for determining the orientation of chemical shift tensors in polycrystalline solids with site resolution and demonstrate its application to the determination of the Calpha chemical shift tensor orientation in a model peptide with beta-sheet torsion angles. The tensor orientation is obtained under magic angle spinning by modulating a recoupled chemical shift anisotropy (CSA) pattern with various dipolar couplings. These dipolar-modulated chemical shift patterns constitute the indirect dimension of a 2D spectrum and are resolved according to the isotropic chemical shifts of different sites in the direct dimension. These dipolar-modulated CSA spectra are equivalent to the projection of a 2D static separated-local-field spectrum onto its chemical shift dimension, except that its dipolar dimension is multiplied with a modulation function. Both (13)C-(1)H and (13)C-(15)N dipolar couplings can modulate the CSA spectra of the Calpha site in an amino acid and yield the relative orientations of the chemical shift principal axes to the C-H and C-N bonds. We demonstrate the C-H and C-N modulated CSA experiments on methylmalonic acid and N-tBoc-glycine, respectively. The MAS results agree well with the results of the 2D separated-local-field spectra, thus confirming the validity of this MAS dipolar-modulation approach. Using this technique, we measured the Val Calpha tensor orientation in N-acetylvaline, which has beta-sheet torsion angles. The sigma(11) axis is oriented at 158 degrees (or 22 degrees) from the C-H bond, while the sigma(22) axis is tilted by 144 degrees (or 36 degrees) from the C-N bond. Both the orientations and the magnitude of this chemical shift tensor are in excellent agreement with quantum chemical calculations.  相似文献   

10.
11.
Many of today's drug discovery programs use high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or line width to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR screens that use 1D (1)H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA.  相似文献   

12.
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.  相似文献   

13.
《Chemical physics》1987,118(1):25-32
Cadmium chemical shifts are studied theoretically by the ab initio molecular orbital method. The compounds studied are CdMe2, CdMeEt, CdEt2, CdMe(OMe), Cd(OMe)2, CdMe(SMe) and Cd(SMe)2. The calculated values of the Cd chemical shifts agree excellently with the experimental values, showing quantitative reliability of the theoretical method used in this paper. The cadmium chemical shift is mainly due to the p mechanism in the paramagnetic term. The contribution of the d mechanism is small. Therefore, the metal chemical shift is proportional to the π-electron donating ability of the ligands. The diamagnetic contribution, which is determined solely by a structural factor, is small for the chemical shift. The difference between the methyl and ethyl ligands is attributed partly to the p mechanism (paramagnetic) and partly to the structural factor (diamagnetic). The outer d orbitals of the sulfur in the SMe ligand are unimportant for the Cd chemical shift.  相似文献   

14.
This study addresses a number of topical issues around the use of protein-ligand docking in virtual screening. We show that, for the validation of such methods, it is key to use focused libraries (containing compounds with one-dimensional properties, similar to the actives), rather than "random" or "drug-like" libraries to test the actives against. We also show that, to obtain good enrichments, the docking program needs to produce reliable binding modes. We demonstrate how pharmacophores can be used to guide the dockings and improve enrichments, and we compare the performance of three consensus-ranking protocols against ranking based on individual scoring functions. Finally, we show that protein-ligand docking can be an effective aid in the screening for weak, fragment-like binders, which has rapidly become a popular strategy for hit identification. All results presented are based on carefully constructed virtual screening experiments against four targets, using the protein-ligand docking program GOLD.  相似文献   

15.
16.
A new approach to NMR chemical shift additivity parameters using simultaneous linear equation method has been introduced. Three general nitrogen-15 NMR chemical shift additivity parameters with physical significance for aliphatic amines in methanol and cyclohexane and their hydrochlorides in methanol have been derived. A characteristic feature of these additivity parameters is the individual equation can be applied to both open-chain and rigid systems. The factors that influence the (15)N chemical shift of these substances have been determined. A new method for evaluating conformational equilibria at nitrogen in these compounds using the derived additivity parameters has been developed. Conformational analyses of these substances have been worked out. In general, the results indicate that there are four factors affecting the (15)N chemical shift of aliphatic amines; paramagnetic term (p-character), lone pair-proton interactions, proton-proton interactions, symmetry of alkyl substituents and molecular association.  相似文献   

17.
The local origin/local orbital (LORG ) method of Hansen and Bouman has been implemented with the intermediate neglect of differential overlap Hamiltonian for spectroscopy (INDO /S ). The method is shown capable of demonstrating the inductive effects associated with electron-withdrawing substituents through the diamagnetic shielding term. In addition, the method is capable of differentiating chemical shift in differing bond environments. The calculated paramagnetic contribution, however, is deficient for substituents that saturate the minimal basis such as oxygen and fluorine, which severely limits the general utility of the procedure. Through the utilization of reduced linear equations for the paramagnetic term, the method is amenable to any molecule for which a self-consistent field can be performed and therefore can potentially be used to study very large systems. At present, however, the LORG method when used with the rapid INDO /S model Hamiltonian does not reliably reproduce the paramagnetic contribution to the shielding.  相似文献   

18.
Fast, discontinuous separation procedures are described for zirconium, niobium, technetium and antimony from fission products. Other rapid separation methods from aqueous solutions are summarized. The combination of a gas jet recoil transport system with a continuous solvent extraction technique and with a thermochromatographic separation method is presented. The application of such procedures to the investigation of new and already known short-lived nuclides is illustrated by some examples.  相似文献   

19.
The possibility of using the NMR chemical shift to evaluate and develop intermolecular potentials for cross-interactions between polar and nonpolar molecules has been examined using the method of molecular dynamics. Such interaction potential models are known to be notoriously difficult to develop. Our work has shown that chemical shift can be obtained quite efficiently in simulations and converges much faster than other properties traditionally used for such evaluations (for example, the infinite dilution activity coefficients, Henry’s constants or the solubility of solutes in solvents). We have also found chemical shift to be quite sensitive to the intermolecular potentials which makes it a rather promising property to investigate polar–nonpolar interactions in fluids.  相似文献   

20.
A novel temperature-controlled nanoelectrospray (nanoES) device, interfaced with a Fourier transform ion cyclotron resonance mass spectrometer, is used to measure the association constants, Kassoc, for a series of protein-carbohydrate complexes at solution temperatures ranging from 5 to 40 degrees C. From a van't Hoff analysis of the Kassoc values, the enthalpies and entropies of association (DeltaHassoc, DeltaSassoc) at 25 degrees C are determined. The nanoES/mass spectrometry-derived thermodynamic parameters are in agreement with values previously determined by isothermal titration calorimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号