首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aeration of municipal landfills contributes to the acceleration of organic matter degradation and to the decrease of pollutant emission into air, water, and soil. Biodegradation of organic matter present in municipal waste, deposited in a landfill, by microorganisms under anaerobic conditions is a slow process. The aim of the study was to carry out simulations of an aerobic landfill in lysimeters, to determine the influence of aeration rate on the degradation of organic matter present in landfills, and to formulate a mathematical model defining the changes of carbon content in leachate and in gas produced. In this work, simulation of aerobic landfill leachate degradation was carried out in laboratory scale lysimeters with the working volume of 15 L. The changes of BOD5, COD, and ammonium nitrogen concentration during aeration were similar for all aeration rates. During aeration, the BOD5 index decreased by 99.9 %, COD decreased by 95.1 %, and ammonium nitrogen concentration by 93 %. The proposed kinetic model defines the processes of organic carbon content changes in simulated leachate and the quantity of carbon dioxide for aerobic landfill simulation quite well.  相似文献   

2.
Herein, we fabricated a π–π stacking hybrid photocatalyst by combining two two-dimensional (2D) materials: g-C3N4 and a Cu-porphyrin metal–organic framework (MOF). After an aerobic photocatalytic pretreatment, this hybrid catalyst exhibited an unprecedented ability to photocatalytically reduce CO2 to CO and CH4 under the typical level (20 %) of O2 in the air. Intriguingly, the presence of O2 did not suppress CO2 reduction; instead, a fivefold increase compared with that in the absence of O2 was observed. Structural analysis indicated that during aerobic pretreatment, the Cu node in the 2D-MOF moiety was hydroxylated by the hydroxyl generated from the reduction of O2. Then the formed hydroxylated Cu node maintained its structure during aerobic CO2 reduction, whereas it underwent structural alteration and was reductively devitalized in the absence of O2. Theoretical calculations further demonstrated that CO2 reduction, instead of O2 reduction, occurred preferentially on the hydroxylated Cu node.  相似文献   

3.
The degradation of 4-chlorobiphenyl (4CB) was compared in field lysimeters containing 60 Kg of soil contaminated with 5–10 mg/Kg of polychlorinated biphenyls.Alcaligenes A5, a bacterium carrying a plasmid for 4CB degradation, was inoculated into three lysimeters. When compared to an untreated control, soil samples from water, mineral, and yeast extract treated lysimeters with and without a bacterial inoculum exhibited greater than 10-fold increases in the rate of [1-14 C-acetate incorporation into lipids and14CO2 production from [U-14C-4-chlorobiphenyl. Gene probe analyses for the 4CB plasmid and most-probable-number enumerations demonstrated the presence of biodegradative populations in lysimeters and the probable survival of the addedAlcaligenes A5.  相似文献   

4.
Various metal oxides with 0.1 wt% Ag loaded as a cocatalyst were prepared by an impregnation method and examined their photocatalytic activity for CO2 reduction with water. Among all the prepared Ag-loaded metal oxides, Ga2O3, ZrO2, Y2O3, MgO, and La2O3 showed activities for CO and H2 productions under ultraviolet light irradiation. Thus, metal oxides involving metal cations with closed shell electronic structures such as d0, d10, and s0 had the potential for CO2 reduction with water. In situ Fourier transform infrared measurement revealed that the photocatalytic activity and selectivity for CO production are controlled by the amount and chemical states of CO2 adsorbed on the catalyst surface and by the surface basicity, as summarized as follows: Ag/ZrO2 enhanced H2 production rather than CO production due to very little CO2 adsorption. Ag/Ga2O3 exhibited the highest activity for CO production, because adsorbed monodentate bicarbonate was effectively converted to bidentate formate being the reaction intermediates for CO production owing to its weak surface basicity. Ag/La2O3, Ag/Y2O3, and Ag/MgO having both weak and strong basic sites adsorbed larger amount of carbonate species including their ions and suppressed H2 production. However, the adsorbed carbonate species were hardly converted to the bidentate formate.  相似文献   

5.
Electrochemical reduction of CO2 into energy‐dense chemical feedstock and fuels provides an attractive pathway to sustainable energy storage and artificial carbon cycle. Herein, we report the first work to use atomic Ir electrocatalyst for CO2 reduction. By using α‐Co(OH)2 as the support, the faradaic efficiency of CO could reach 97.6 % with a turnover frequency (TOF) of 38290 h?1 in aqueous electrolyte, which is the highest TOF up to date. The electrochemical active area is 23.4‐times higher than Ir nanoparticles (2 nm), which is highly conductive and favors electron transfer from CO2 to its radical anion (CO2.?). Moreover, the more efficient stabilization of CO2.? intermediate and easy charge transfer makes the atomic Ir electrocatalyst facilitate CO production. Hence, α‐Co(OH)2‐supported atomic Ir electrocatalysts show enhanced CO2 activity and stability.  相似文献   

6.
Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2) reduction half-reaction and the water (H2O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust −C=C− bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron–hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 μmol g−1 h−1 with about 100 % selectivity) and oxygen (O2) evolution (90.2 μmol g−1 h−1) among all the porous catalysts in CO2 reduction with H2O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure–function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.  相似文献   

7.
Herein, we report the controlled and direct fabrication of Cu2O/CuO thin film on the conductive nickel foam using electrodeposition route for the electrochemical reduction of carbon dioxide (CO2) to methanol. The electrocatalytic reduction was performed in CO2 saturated aqueous solution consisting of KHCO3, pyridine and HCl at room temperature. CO2 reduction was carried out at a constant potential of −1.3 V for 120 min to study the electrochemical performance of the prepared electrocatalysts. Cu2O/CuO shows better electrocatalytic activity with highest current density of 46 mA/cm2. The prepared catalyst can be an efficient and selective electrode for the production of methanol.  相似文献   

8.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

9.
Summary The adsorption of 99Tc on the adsorbers Fe, Fe2O3 and Fe3O4 was studied by batch experiments under aerobic and anoxic conditions. The effects of pH and CO32- concentration of the simulated ground water on the adsorption ratios were also investigated, and the valences of Tc in solution after the adsorption equilibrium were studied by solvent extraction. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 were determined. Experimental results have shown that the adsorption ratio of Tc on Fe decreases with the increase of pH in the range of 5-12 and increases with the decrease of the CO32- concentration in the range of 10-8M-10-2M. Under aerobic conditions, the adsorption ratios of 99Tc on Fe2O3 and Fe3O4 were not influenced by pH and CO32-concentration. When Fe was used as adsorbent, Tc existed mainly in the form of Tc(IV) after equilibrium and in the form of Tc(VII) when the adsorbent was Fe2O3 or Fe3O4 under aerobic conditions. The adsorption ratios of Tc on Fe, Fe2O3 and Fe3O4 decreased with the increase of pH in the range of 5-12 and increased with the decrease of the CO32- concentration in the range of 10-8M-10-2M under anoxic conditions. Tc existed mainly in the form of Tc(IV) after equilibrium when Fe, Fe2O3 and Fe3O4 was the adsorbent under anoxic conditions. The adsorption isotherms of TcO4- on the adsorbers Fe, Fe2O3 and Fe3O4 are fairly in agreement with the Freundlich’s equation under both aerobic and anoxic conditions.  相似文献   

10.
A modular internal micro-electrolysis Fenton reactor (MIME-Fenton) was specifically designed in order to facilitate the performance of internal micro-electrolysis (IME) technology in the treatment of mature landfill leachate. Excellent COD removal efficiency of 90.9 % by the new reactor of mature landfill leachate was observed in bench-scale treatment, which is 193–399, 415–551, and 226–457 % higher than that of conventional treatments of electrolysis, coagulation–sedimentation, and Fenton, respectively. The innovative concept behind the excellent performance is the novel two-step treatment, similar to the anaerobic–aerobic activated sludge method. It is based on a combination effect of reductive IME and oxidative IME with aeration processes and the integration of electro-aggregation and electro-coagulation. Initial pH and air flow rate were optimized, and the effect of auxiliary in situ regeneration of ferrous iron and generation of H2O2 was further investigated. The reactor was also particularly efficient in removal of color and HA, and in improvement of the BOD5/COD ratio. All these results show that the MIME-Fenton reactor, a new approach of IME, is promising for mature landfill leachate treatment because it is efficient and easy to operate.  相似文献   

11.
The mercury-photosensitized oxidation of CO was studied at 275°C over a wide range of [O2]/[CO] ratios in the absence and presence of the oxygen atom scavenger 2-trifluoromethylpropene (TMP) and at 25°C at low [O2]/[CO] ratios in the presence of TMP. By following the quantum yield of CO2 production, Φ {CO2}, as a function of the [O2]/[CO] ratio, the reactions of vibrationally excited CO (v υ 9) and electronically excited O2, probably in the c1Σ?u state, were studied. At low [O2]/[CO] ratios the predominant reactions are of vibrationally excited CO (v υ 9). Relative rate constants for chemical reaction versus deactivation of CO (v υ 9) were obtained. At higher [O2]/[CO] ratios, the principal reactions are of electronically excited O2. Relative rate constants for chemical reactions and deactivation of this electronically excited O2 with CO, O2, and TMP were obtained. From the effect of total pressure on Φ {CO2}, it is proposed that an intermediate CO3 is formed in the reaction of electronically excited O2 with CO.  相似文献   

12.
The uptake and assimilation of HCO3 by the green unicellular alga Monoraphidium braunii can be monitored by the alkalinization of the external medium or by the O2 evolution associated with the uptake and reduction of this anion. The activation of HCO3 uptake in this microalga required the irradiation of the cell suspensions with low photon fluence rates of short wavelength radiation. Thus, when the cells were irradiated with strong red light in the presence of HCO3, very little alkalinization of the external medium or O2 evolution could be observed. The O2 evolution rates measured under red light could be due to the assimilation of the CO2 derived from the HCO3 present in the medium. The blue light-dependent O2 evolution rates were not diminished by a periplasmic carbonic anhydrase inhibitor, suggesting that HCO3 -dependent O2 evolution was due to the photoactivation of a selective HCO3 uptake system at the plasma membrane. The action spectrum for HCO3- uptake in M. braunii was very similar to those reported for NO3- and CI- suggested that a flavoprotein may be the photoreceptor for this response.  相似文献   

13.
The electrochemical reduction of carbon dioxide (CO2) is investigated in acetonitrile with tetrabutylammonium perchlorate as an electrolyte using a lead cathode and a sacrificial zinc anode, and the product under such a setup is insoluble zinc oxalate at potentials between ?2.2 and ?2.8 V vs. Ag rod electrode. Preelectrolysis is an effective method to remove the water in the electrolyte, which makes a distinct reduction peak of CO2 appear at ?2.6 V vs. Ag on cyclic voltammogram. Even trace amounts of water in the electrolyte can interfere with the faradaic efficiency of reduction of CO2 to oxalate, and the product could be β-ZnC2O4 (in anhydrous solution) or ZnC2O4?·?2H2O (if water exists). The faradaic efficiency for oxalate production also depends on the cathode potential and the temperature, and the maximum is 96.8 % at ?2.6 V vs. Ag and 5 °C. This is the highest value of CO2 electrochemical reduction found in the literature under ambient pressure.  相似文献   

14.
《Chemical physics letters》1986,125(2):123-128
A crossed beam study of CO+ production from the C+ + O2 reaction at a collision energy of 0.57 eV is presented. Very clear collision complex dynamics are observed which are shown to be consistent with the decay of a transient complex having a lifetime of approximately 0.5 ps. An analysis of the reactive scattering using an adiabatic state correlation diagram indicates that the formation of X-state CO2+ by insertion of C+ into the O2 bond is accessible from the reagents and correlates adiabatically with ground-state products. The average kinetic energy release is approximately 23% of the available energy. A comparison of the present data with the chemiluminescent studies of A-state production of CO+ indicates that the dominant channels at low energies are production of ground-state CO+ through the X2Πg and a4Πu state of CO2+.  相似文献   

15.
Photoelectrochemical syngas production from aqueous CO2 is a promising technique for carbon capture and utilization. Herein, we demonstrate the efficient and tunable syngas production by integrating a single-atom cobalt-catalyst-decorated α-Fe2O3 photoanode with a bimetallic Ag/Pd alloy cathode. A record syngas production activity of 81.9 μmol cm−2 h−1 (CO/H2 ratio: ≈1 : 1) was achieved under artificial sunlight (AM 1.5 G) with an excellent durability. Systematic studies reveal that the Co single atoms effectively extract the holes from Fe2O3 photoanodes and serve as active sites for promoting oxygen evolution. Simultaneously, the Pd and Ag atoms in bimetallic cathodes selectively adsorb CO2 and protons for facilitating CO production. Further incorporation with a photovoltaic, to allow solar light (>600 nm) to be utilized, yields a bias-free CO2 reduction device with solar-to-CO and solar-to-H2 conversion efficiencies up to 1.33 and 1.36 %, respectively.  相似文献   

16.
CO2 在高分散 Ni/La2O3 催化剂上的甲烷化   总被引:1,自引:0,他引:1  
 以 La2O3 为载体, 采用浸渍法制备了 10%Ni/La2O3 催化剂, 考察了该催化剂的 CO2 甲烷化反应性能. 结果表明, 在较低的温度 (350 oC) 和高空速 (约 30000 h–1) 下, 甲烷时空收率可大于 3000 g/(kg•h), 无论转化率高低, 甲烷选择性始终保持在 100%. X 射线衍射和 H2-程序升温还原等表征结果表明, CO2 在 Ni/La2O3 催化剂上的加氢机理可能与 Ni/γ-Al2O3 上不同, 并且 La2O2CO3 的形成有利于提高催化剂活性.  相似文献   

17.
Solid oxide fuel cell (SOFC) unit was constructed with Ni–GDC (gadolinia-doped ceria) as the anode, YSZ as the electrolyte, and Cu-added La0.58Sr0.4Co0.2Fe0.8O3–δ–GDC as the cathode. Electrochemical CO2 reduction occurs. The CO formation rate, the CO2 conversion and the generated current density increase with increasing CO2 concentration and temperature. The CO2 conversion rate equals exactly the CO formation rate. No carbon deposition occurs. The activation energy is 2.72 kcal mol?1. The electrochemical CO2 reduction (dissociation) can have much lower activation barrier than the catalytic one. Simultaneous CO2 reduction with power generation in SOFCs can be feasible.  相似文献   

18.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of −0.28 V vs. RHE and partial current density of over 200 mA cm−2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth-based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   

19.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of ?0.28 V vs. RHE and partial current density of over 200 mA cm?2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth‐based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   

20.
Direct synthesis of CH3COOH from CH4 and CO2 is an appealing approach for the utilization of two potent greenhouse gases that are notoriously difficult to activate. In this Communication, we report an integrated route to enable this reaction. Recognizing the thermodynamic stability of CO2, our strategy sought to first activate CO2 to produce CO (through electrochemical CO2 reduction) and O2 (through water oxidation), followed by oxidative CH4 carbonylation catalyzed by Rh single atom catalysts supported on zeolite. The net result was CH4 carboxylation with 100 % atom economy. CH3COOH was obtained at a high selectivity (>80 %) and good yield (ca. 3.2 mmol g−1cat in 3 h). Isotope labelling experiments confirmed that CH3COOH is produced through the coupling of CH4 and CO2. This work represents the first successful integration of CO/O2 production with oxidative carbonylation reaction. The result is expected to inspire more carboxylation reactions utilizing preactivated CO2 that take advantage of both products from the reduction and oxidation processes, thus achieving high atom efficiency in the synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号