首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the problems of large deflection of clamped circular plates under uniformly distributed loads, various perturbation parameters relating to load, deflection, slope of deflection, membrane force, etc, are studied. For a general perturbation parameter, the variational principle is used for the solution of such a problem. The applicable range of these perturbation parameters are studied in detail. In the case of uniformly loaded plate, perturbation parameter relating to central deflection seems to be the best among all others. The method of determination of perturbation solution by means of variational principle can be used to treat a variety of problems, including the large deflection problems under combine loads. This paper is completed under the guidance of Prof. Chien Wei-zang.  相似文献   

2.
A numerical investigation of the two-dimensional laminar flow around side-by-side rotating circular cylinders using Lattice Boltzmann method is conducted. The effects of variation of rotational speed ratio β and different gap spacings g* at Reynolds number of 100 are studied. A various range of rotational speed ratio 0 ≤ β ≤ 2 for four different gap spacings of 3, 1.5, 0.7 and 0.2 are investigated. Flow conditions and its characteristics, such as lift and drag coefficients and Strouhal number, is studied. The results indicated that as β increases, the flow changes its condition from periodic to steady after a critical rotational speed. Results also indicated that variation of the gap spacing and rotational speed has significant effect on wake pattern. Wake pattern in turn has significant effect on the Strouhal number. Finally, the result is compared with experimental and other numerical data.  相似文献   

3.
基于浸入边界-格子Boltzmann通量求解法,开展了雷诺数Re=100不同几何参数下单椭圆柱及串列双椭圆柱绕流流场与受力特性对比研究。结果表明,随长短轴比值的增加,单椭圆柱绕流阻力系数先减小后缓慢上升,最大升力系数则随长短轴比值的增大而减小;尾迹流动状态从周期性脱落涡到稳定对称涡。间距是影响串列圆柱及椭圆柱流场流动状态的主要因素,间距较小时,串列圆柱绕流呈周期性脱落涡状态,而椭圆柱则为稳定流动;随着间距增加,上下游圆柱及椭圆柱尾迹均出现卡门涡街现象,且串列椭圆柱临界间距大于串列圆柱。串列椭圆柱阻力的变化规律与圆柱的基本相同,上游平均阻力大于下游阻力;上游椭圆柱阻力随着间距的变大先减小,下游随间距的变大而增加,当间距达到临界间距时上下游阻力跃升,随后出现小幅度波动再逐渐增加,并趋近于相同长短轴比值下单柱体绕流的阻力。  相似文献   

4.
A wall‐driven incompressible viscous flow in a ½ circular cavity is simulated, based on the lattice Boltzmann method (LBM). The treatment of curved boundary with second‐order accuracy is used. The force evaluation is based on the momentum‐exchange method. The streamlines and vorticity contours and the velocity component along the central line of a semi‐circular cavity are obtained for different Reynolds numbers. The numerical results show that the LBM can capture the formation of primary, secondary and tertiary vortices exactly as the Reynolds number increases and has a great agreement with those of current literatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.  相似文献   

6.
采用格子Boltzmann-虚拟区域方法对并列双椭圆柱绕流进行了模拟研究。首先,通过与并列双圆柱的结果进行对比,验证了数值方法的有效性。其次对雷诺数为200时两种间距(g=0.5a和2.0a,g为柱体表面间距,a为椭圆长轴)的情况进行了研究,考察了椭圆长轴与短轴之比,即α值对柱体升阻力系数及涡结构的影响。研究发现,与圆柱相比,对于g=0.5a椭圆柱的升阻力系数可能出现两种变化,一是升阻力随时间演化较规则,接近周期性;二是流场可能长时间偏向于其中一个椭圆柱,这些变化与α的值有关。对于g=2.0a,两个椭圆柱后的某一区域内会出现四列涡街,经过一段时间,四列涡街又会演化成两列向两侧扩张的涡街。  相似文献   

7.
In this article, a novel approach for flux treatment is presented in conjunction with cell-centred Finite-Volume Lattice Boltzmann Method (FVLBM). The distribution functions are determined by using a pressure-based flux weighting factor on a D2Q9 lattice. A consistent open and solid boundary treatment is also addressed, which resulted in a wider domain of stability and faster convergence. For time discretisation, a fifth-order Runge–Kutta algorithm was applied. An in-house FORTRAN code has been written by the authors which uses the time-marching along with FVLBM. Two test cases, namely, flow over a backward-facing step and around a circular cylinder are carried out. The results are compared with the available solutions in which favourable agreement was observed.  相似文献   

8.
虚拟边界法研究正交双圆柱及串列双圆球绕流   总被引:6,自引:0,他引:6  
把Goldstein等人提出的虚拟边界法推广到三维情况,研究了 Re=150时不同间距下正交双圆柱绕流,和Re=250时不同间距下串列双 圆球绕流流场. 对于正交双圆柱绕流,当间距比大于3,下游圆柱对上游圆柱尾流的影响只 限定在下游圆柱的尾流所扫过的范围之内;当间距比小于等于3,下游圆柱对上游圆柱尾流 的影响扩大,下游圆柱尾流扫过区上下出现两排三维流向二次涡结构. 对于串列圆球绕流, 研究发现,在小间距比(L/D≈ 1.5)的情况下,由于上下游圆球尾流区的相互抑 制消除了压力不稳定性,整个流场呈现稳 态轴对称特征;间距比为2.0时,周向压力梯度诱发出流体的周向输运,流场呈现稳态非对 称性,但流场中存在特定的对称面;间距比增大到2.5后,绕流场开始周期振荡,原有的对 称面依旧存在;在间距比3.5时下游圆球下表面的涡结构强度有所减弱,导致占优频率发生 交替;间距比增至7.0时,整个流场恢复稳态特征,两圆球尾部同时出现双线涡,这时流场 对称面的位置发生了变动.  相似文献   

9.
An improved immersed boundary–lattice Boltzmann method (IB–LBM) developed recently [28] was applied in this work to simulate three‐dimensional (3D) flows over moving objects. By enforcing the non‐slip boundary condition, the method could avoid any flow penetration to the wall. In the developed IB–LBM solver, the flow field is obtained on the non‐uniform mesh by the efficient LBM that is based on the second‐order one‐dimensional interpolation. As a consequence, its coefficients could be computed simply. By simulating flows over a stationary sphere and torus [28] accurately and efficiently, the proposed IB–LBM showed its ability to handle 3D flow problems with curved boundaries. In this paper, we further applied this method to simulate 3D flows around moving boundaries. As a first example, the flow over a rotating sphere was simulated. The obtained results agreed very well with the previous data in the literature. Then, simulation of flow over a rotating torus was conducted. The capability of the improved IB–LBM for solving 3D flows over moving objects with complex geometries was demonstrated via the simulations of fish swimming and dragonfly flight. The numerical results displayed quantitative and qualitative agreement with the date in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The lattice Boltzmann method (LBM) is becoming an effective numerical technique of computational fluid dynamics (CFD). In this study, with some new thermal LBM schemes being proposed, the LBM is used to simulate the gravity current prior to backdraft (a particular and hazardous phenomenon in compartment fire) within laminar restrictions. The dimensionless time for gravity current traveling from the opening to the rear wall of a bench‐scale compartment is calculated under different opening geometries, respectively, including: full end opening, upside‐slot end opening, middle‐slot end opening, downside‐slot end opening, and slot ceiling opening. The application is very successful and the results show that the dimensionless time under the slot ceiling opening is the longest. Among the slot end openings, similar dimensionless time has been obtained for the upside‐slot and middle‐slot end openings, which is shorter than the downside‐slot end opening. For the full end opening, the shortest dimensionless time is obtained. Finally, some valuable advices are given for fire protection engineering. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Central moment lattice Boltzmann method (LBM) is one of the more recent developments among the lattice kinetic schemes for computational fluid dynamics. A key element in this approach is the use of central moments to specify the collision process and forcing, and thereby naturally maintaining Galilean invariance, an important characteristic of fluid flows. When the different central moments are relaxed at different rates like in a standard multiple relaxation time (MRT) formulation based on raw moments, it is endowed with a number of desirable physical and numerical features. Because the collision operator exhibits a cascaded structure, this approach is also known as the cascaded LBM. While the cascaded LBM has been developed sometime ago, a systematic study of its numerical properties, such as the accuracy, grid convergence, and stability for well‐defined canonical problems is lacking, and the present work is intended to fulfill this need. We perform a quantitative study of the performance of the cascaded LBM for a set of benchmark problems of differing complexity, viz., Poiseuille flow, decaying Taylor–Green vortex flow, and lid‐driven cavity flow. We first establish its grid convergence and demonstrate second‐order accuracy under diffusive scaling for both the velocity field and its derivatives, that is, the components of the strain rate tensor, as well. The method is shown to quantitatively reproduce steady/unsteady analytical solutions or other numerical results with excellent accuracy. The cascaded MRT LBM based on the central moments is found to be of similar accuracy when compared with the standard MRT LBM based on the raw moments, when a detailed comparison of the flow fields are made, with both reproducing even the small scale vortical features well. Numerical experiments further demonstrate that the central moment MRT LBM results in significant stability improvements when compared with certain existing collision models at moderate additional computational cost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In order to find applicable treatments of moving boundary conditions based on the lattice Boltzmann method in flow acoustic problems, three bounce‐back (BB) methods and four kinds of immersed boundary (IB) methods are compared. We focused on fluid–solid boundary conditions for flow acoustic problems especially the simulations of sound waves from moving boundaries. BB methods include link bounce‐back, interpolation bounce‐back and unified interpolation bounce‐back methods. Five IB methods are explicit and implicit direct‐forcing (Explicit‐IB and Implicit‐IB), two kinds of partially saturated computational methods and ghost fluid method. In order to reduce the spurious pressure generated by the fresh grid node changing from solid domain to fluid domain for BB methods and sharp IB methods, we proposed two new kinds of treatments and compared them with two existing ones. Simulations of the benchmark problems prove that the local evolutionary iteration (LI) is the best one in treatments of the fresh nodes. In addition, for standing boundary problems, although BB methods have a little higher accuracy, all the methods have similar accuracy. However, for moving boundary problems, IB methods are more appropriate than BB methods, because IB methods' smooth interpolation of pressure eld produces less disturbing spurious pressure waves. With improved treatments of fresh nodes, BB methods are also acceptable for moving boundary acoustic problems. In comparative tests in respective type, unified interpolation bounce‐back with LI, Implicit‐IB, and ghost fluid with LI are the best choices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A variant of immersed boundary‐lattice Boltzmann method (IB‐LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB‐LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non‐slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non‐slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Based on the lattice Boltzmann (LB) approach, a novel hybrid method has been proposed for getting insight into the microscale characteristics of the multicomponent flow of nanofluid. In this method, the whole computational domain is divided into two regions in which different-sized meshes are involved for simulation (fine mesh and coarse mesh). The multicomponent LB method is adopted in the fine mesh region, and the single-component LB approach is applied to the coarse mesh region where the nanofluid is treated as a mixed single-component fluid. The conservation principles of mass, momentum and energy are used to derive a hybrid scheme across the different scaled regions. Numerical simulation is carried out for the Couette flow and convective heat transfer in a parallel plate channel to validate the hybrid method. The computational results indicate that by means of the present method, not only the microscopic characteristics of the nanofluid flow can be simulated, but also the computational efficiency can be remarkably improved compared with the pure multicomponent LB method.  相似文献   

15.
In this article, an extension to the total variation diminishing finite volume formulation of the lattice Boltzmann equation method on unstructured meshes was presented. The quadratic least squares procedure is used for the estimation of first‐order and second‐order spatial gradients of the particle distribution functions. The distribution functions were extrapolated quadratically to the virtual upwind node. The time integration was performed using the fourth‐order Runge–Kutta procedure. A grid convergence study was performed in order to demonstrate the order of accuracy of the present scheme. The formulation was validated for the benchmark two‐dimensional, laminar, and unsteady flow past a single circular cylinder. These computations were then investigated for the low Mach number simulations. Further validation was performed for flow past two circular cylinders arranged in tandem and side‐by‐side. Results of these simulations were extensively compared with the previous numerical data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
用格子Boltzmann方法计算混合层中的流动问题。在流场的入口处加不同频率、振幅和相位的小扰动,观察混合层中旋涡的演进机理,模拟二维混合层中旋涡合并现象。在基本扰动波的基础上,又加入频率为基本波频率一半的亚谐波,得到了两个涡合并的计算结果,当加入的亚谐波频率为基本波频率的三分之一时,得到了三个涡合并的计算结果。这些计算结果与已有文献的结果基本一致,显示用格子Boltzmann方法模拟混合层问题是可行的。  相似文献   

17.
等离子熔射粉末颗粒飞行过程格子Boltzmann法仿真   总被引:2,自引:1,他引:1  
为考察等离子熔射过程中粉末的飞行过程,本文在已开发的正六边形7-b it格子Bo ltzm ann(LB)方法等离子射流的温度场和速度场的计算模型基础上,采用单个颗粒加速方程,建立了一个随机算法,实现了对粉末颗粒在射流场中运动过程的仿真;计算结果通过动画演示了粉末飞行的全过程,表明初始位置越靠近射流场出口中心的粉末颗粒加速越充分,并且在射流场一定的情况下,减小粉末颗粒直径可以提高粉末速度,但会降低粉末利用率。  相似文献   

18.
The flow of water in a straight compound channel with prismatic cross section is investigated with a relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses, the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the large eddy simulation is performed. The results of numerical simulations are compared with the available experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence in compound channels and is sufficiently accurate for practical applications in engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes parallel computing approach for simulating turbulent flows using a moment base lattice Boltzmann method. The distribution functions of the lattice Boltzmann method are expressed by corresponding moments. Choosing proper relaxation times for higher order moments, a minimum numerical dissipation is implicitly added to stabilise the method at high Reynolds numbers. Validation of the method is made by computing free decaying periodic turbulent flows and fully developed turbulent channel flows on a GPU platform. Though the present method requires additional work to calculate the higher order moments, it is shown that additional computational cost is negligible in the GPU computing. The numerical results stably obtained for the turbulent flows are in good agreement with those of a pseudo-spectral method and corresponding DNS database.  相似文献   

20.
格子-波尔兹曼法是近年来新兴的一种计算流体力学数值方法。随着这种方法的不断发展,人们将它用于流体的仿真、优化等不同场合。与此同时,一些与流场流速和压强相关的物理量(如能耗)的求解也成为关注的焦点。本文介绍了能耗这一流体宏观量的格子-波尔兹曼法求解及其实现。与传统的有限差分法不同,本文在求解有关的速度梯度时使用了格子-波尔兹曼-矩法,这种方法不但能够避免有限差分法在边界处失效的缺点,而且计算简单,算法局部性好,适合大规模并行计算。本文在分析其数值解精度的基础上,使用这种方法进行了以能耗极小为目标的直通道内椭圆挡块的参数优化。这些分析和算例分别定量和定性地说明了本文算法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号