首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allyl cellulose was synthesized by reacting cellulose with allyl bromide in homogeneous LiCl/DMAc solution containing NaOH powder. The degree of substitution (DS) per anhydroglucose (AHG) unit was determined by titrating the allyl cellulose with bromine in chloroform solution, and an allyl DS of 2.80 was found. Glycidyl cellulose was then prepared by reacting this allyl cellulose with peracetic acid in methylene chloride at ambient temperature for 6 days. The measured reaction rate constant was 1.33 × 10?3 min?1. The glycidyl cellulose thus obtained with a glycidyl DS of 2.58 was determined by titrating the product with perchloric acid in conjunction with tetrabutylammonium iodide. The 2.58 of glycidyl DS was also confirmed by 1H-NMR integration. Both allyl cellulose and glycidyl cellulose were analyzed and characterized with FTIR, 1H-NMR, 13C-NMR, TGA, and GPC. During epoxidation of allyl cellulose, possible side reaction leading to ester formation was evidenced from the continuous increase of vC? O at 1735 cm?1 in FTIR analyses. In addition, a bimodal distribution and a decreased molecular weight for glycidyl cellulose were found from GPC data, which might suggest a possible chain scission at the cellulosic ether linkage. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Functional aliphatic polycarbonates with pendant allyl groups were synthesised by copolymerization of carbon dioxide and allyl glycidyl ether (AGE) in the presence of a catalyst system based on ZnEt2 and pyrogallol at a molar ratio 2 : 1. The functionality of some polycarbonates was reduced by replacing a part of allyl ether with saturated glycidyl ether, i.e., butyl glycidyl ether (BGE) or isopropyl glycidyl ether (IGE). Polycarbonates obtained by the copolymerization of AGE and CO2 or by the terpolymerization of AGE, IGE and CO2 were oxidized with m‐chloroperbenzoic acid to their respective poly(epoxycarbonate)s. The influence of the AGE/ΣGE ratio in the polycarbonates, the polymer concentration in the reaction solution and the duration of the reaction on the conversion of allyl groups into glycidyl ones was examined. A tendency to gelation of the initial and oxidized polycarbonates during storage was observed. The initial polycarbonates and their oxidized forms were degraded in aqueous buffer of pH = 7.4 at 37°C. The course of hydrolytic degradation was monitored by the determination of mass loss.  相似文献   

3.
Poly(allyl glycidyl ether) and poly(allyl glycidyl ether‐co‐epichlorohydrin) were prepared by monomer‐activated anionic polymerization. Quantitative and controlled polymerization of allyl glycidyl ether (AGE) giving high molar mass polyether was achieved in a few hours at room temperature in toluene using tetraoctylammonium salt as initiator in presence of an excess of triisobutylaluminum ([i‐Bu3Al]/[NOct4Br] = 2?4). Following the same polymerization route, the copolymerization of AGE and epichlorohydrin yields in a living‐like manner gradient‐type copolymers with controlled molar masses. Chemical modification of the pendant allyl group into cyclic carbonate was then investigated and the corresponding polymers were used as precursors for the isocyanate‐free synthesis of polyurethane networks in presence of a diamine. Formation of crosslinked materials was followed and characterized by infrared and differential scanning calorimetry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The cellulose solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate (TBAF·3 H2O) was studied as reaction medium for the synthesis of benzyl cellulose (BC) by treating the dissolved polymer with benzyl chloride in the presence of solid NaOH or aqueous NaOH solution. BC samples with degree of substitution (DS) between 0.40 and 2.85 were accessible applying different molar ratios. The studies show that both the TBAF·3 H2O concentration and the molar ratio of the reagents to repeating unit influence the DS. The solubility of the BC synthesized in a different way, however, of comparable DS is different. Structural analyses were carried out by means of FTIR-, 1H- and 13C NMR spectroscopy. SEC measurements revealed polymer aggregation in samples of low DS synthesized in a solvent containing 9.0% TBAF·3 H2O. At higher concentration of TBAF·3 H2O in the solvent, the BC samples obtained do not form aggregates. BC of high DS is crystalline and shows thermotropic liquid crystalline behavior as analyzed by means of DSC. Melting point and degradation temperature are not related to the DS.  相似文献   

5.
The determination of the degree of substitution (DS) of fatty acid cellulose esters with alkyl chain lengths from C8 to C18 was performed by direct transesterification with trimethylsulphonium hydroxide (TMSH) using tert-butyl methyl ether (MTBE) as a solvent. Transesterification was demonstrated to be quantitative at 75 °C in 60 min. The quantification of the formed fatty acid methyl esters was performed by gas chromatography (GC). After the optimization of the method, long chain cellulose esters (LCCE) could be analyzed in a wide range of DS. The obtained values were compared to those given by other existing protocols. LCCE with DS-values in a range of 5 × 10−5 to 3 were analyzed with high accuracy. Reproducibility is weakened for high DS values if the sample has a compact aspect limiting the accessibility of TMSH to the ester functions. This method can also be suitable for the analysis of mixed cellulose esters.  相似文献   

6.
Allyl glycidyl ether (AGE), allyl 1,1,2,3,3,3-hexafluoropropyl ether (AFE), allyl 2-naphthyl ether (ANE), 2-vinyl-1,3-dioxolane (2VD) and allyl alcohol (AA) have been examined as transfer agents in the radical polymerization of methyl methacrylate (MMA) at 60°C; the transfer constants are 1.1 × 10?3, 0.1 × 10?3, 0.2 × 10?3, 1.1 × 10?3 and 0.6 × 10?3, respectively. AFE and AA barely affect the rate of polymerization: AGE, ANE, and 2VD act as weak retarders. There is no direct correlation between effectiveness as a transfer agent and the extent of retardation for these additives. For copolymerization with MMA (monomer-1), the monomer reactivity ratios r1 are 42 ± 5 and 32 ± 5 for AGE and ANE, respectively; for both cases, r2 is very close to zero; 2VD engages in copolymerization with MMA to a negligible extent. Experiments involving styrene or acrylonitrile gave results consistent with those obtained using MMA.  相似文献   

7.
Cellulose films were successfully prepared from NaOH/urea/zincate aqueous solution pre-cooled to −13 °C by coagulating with 5% H2SO4. The cellulose solution and regenerated cellulose films were characterized with dynamic rheology, ultraviolet–visible spectroscope, scanning electron microscopy, wide angle X-ray diffraction, Fourier transform infrared (FT-IR) spectrometer, thermogravimetry and tensile testing. The results indicated that at higher temperature (above 65 °C) or lower temperature (below −10 °C) or for longer storage time, gels could form in the cellulose dope. However, the cellulose solution remained a liquid state for a long time at 0–10 °C. Moreover, there was an irreversible gelation in the cellulose solution system. The films with cellulose II exhibited better optical transmittance, high thermal stability and tensile strength than that prepared by NaOH/urea aqueous solution without zincate. Therefore, the addition of zincate in the NaOH/urea aqueous system could enhance the cellulose solubility and improve the structure and properties of the regenerated cellulose films.  相似文献   

8.
We successfully synthesized hydroxypropylcellulose (HPC) and methylcellulose (MC) in high yields from cellulose in 6 wt % NaOH/4 wt % urea aqueous solutions at 25 °C. The cellulose derivatives were characterized with NMR, size exclusion chromatography/laser light scattering, gas chromatography (GC), ultraviolet, and solubility measurements in different solvents. According to the results of solution 13C NMR and GC, the individual degree of substitution (DS; i.e., the average number of substituted hydroxyl groups in the monomer unit) at C‐2 hydroxyl groups was slightly higher than the DS values at C‐3 and C‐6 hydroxyl groups for HPC and MC. In comparison with traditional systems, NaOH/urea aqueous solutions were proved to be a stable and more homogeneous reaction medium for preparing cellulose ether with a more uniform microstructure. The low limits for the average number of moles of the substituent groups per monomer unit and the DS value of water‐soluble HPC were 1.03 and 0.85, respectively. MC (DS = 1.48) had good solubility in both water and organic solvents, and the precipitation point occurred at about 67 °C for a 2% (w/v) aqueous solution. In this way, we could provide a simple, pollution‐free, and homogeneous aqueous solution system for synthesizing cellulose ethers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5911–5920, 2004  相似文献   

9.
Copolymers of allyl glycidyl ether (AGE) with acrylonitrile (AN) have been prepared by bulk polymerization of their monomers with gamma rays. Copolymers thus obtained were characterized by Fourier transform infrared (FTIR), and ultraviolet (UV) spectroscopic techniques. The composition of the copolymers is determined indirectly by FTIR, UV, and directly by elemental analysis. The results obtained by different methods are compared. The reactivity ratios of monomer pairs (AGE + AN) which copolymerized heterogeneously were calculated by using different methods of determination. Among the three experimental methods used for the analysis of compositions and two theoretical methods of computations, the elemental analysis technique and the application of nonlinear least-squares method gave the most reliable reactivity ratios. These are found to be 1.86 and 0.21 for acrylonitrile and allyl glycidyl ether, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The acylation of three cellulose samples by acetic anhydride, Ac2O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 °C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac2O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac2O/AGU = 3. For all celluloses, the dependence of DS on Ac2O/AGU is described by an exponential decay equation: DS = DSo − Ae−[(Ac2O/AGU)/B]; (A) and (B) are regression coefficients, and DSo is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B(M-cotton) > B(M-sisal) > B(MCC); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, Nagg, of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 Nagg. To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac2O/AGU, time, temperature.  相似文献   

11.
Microwave (MW)‐assisted cellulose dissolution in ionic liquids (ILs) has routinely led either to incomplete biopolymer solubilization, or its degradation. We show that these problems can be avoided by use of low‐energy MW heating, coupled with efficient stirring. Dissolution of microcrystalline cellulose in the IL 1‐allyl‐3‐methylimidazolium chloride has been achieved without changing its degree of polymerization; regenerated cellulose showed pronounced changes in its index of crystallinity, surface area, and morphology. MW‐assisted functionalization of MCC by ethanoic, propanoic, butanoic, pentanoic, and hexanoic anhydrides has been studied. Compared with conventional heating, MW irradiation has resulted in considerable decrease in dissolution and reaction times. The value of the degree of substitution (DS) was found to be DSethanoate > DSpropanoate > DSbutanoate. The values of DSpentanoate and DShexanoate were found to be slightly higher than DSethanoate. This surprising dependence on the chain length of the acylating agent has been reported before, but not rationalized. On the basis of the rate constants and activation parameters of the hydrolysis of ethanoic, butanoic, and hexanoic anhydrides in aqueous acetonitrile (a model acyl transfer reaction), we suggest that this result may be attributed to the balance between two opposing effects, namely, steric crowding and (cooperative) hydrophobic interactions between the anhydride and the cellulosic surface, whose lipophilicity has increased, due to its partial acylation. Four ethanoate‐based mixed esters were synthesized by the reaction with a mixture of the two anhydrides; the ethanoate moiety predominated in all products. The DS is reproducible and the IL is easily recycled. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 48: 134–143, 2010  相似文献   

12.
Water-soluble deoxy-azido cellulose derivatives were synthesized by heterogeneous carboxymethylation, applying 2-propanol/aqueous NaOH as slurry medium. The novel, carboxymethyl deoxy-azido cellulose provides a convenient starting material for the selective dendronization of cellulose via the copper-catalyzed Huisgen reaction yielding water-soluble carboxymethyl 6-deoxy-(1-N-[1,2,3-triazolo]-4-polyamidoamine) cellulose derivatives of first (degree of substitution, DS 0.51), second (DS 0.44) and third generation (DS 0.39). The novel biopolymer derivatives were characterized by FT-IR and NMR spectroscopy, intrinsic viscosity, sedimentation coefficient and weight average molar mass. Solution conformation and flexibility were estimated qualitatively using conformation zoning and quantitatively (persistence length) using the combined global method. Sedimentation conformation zoning showed a semi-flexible coil conformation and the global method applied to each carboxymethyl deoxy-azido cellulose and carboxymethyl 6-deoxy-(1-N-[1,2,3-triazolo]-4-polyamidoamine) cellulose derivative yielded persistence length all within the range of 2.8-4.0 nm with no evidence of any change in flexibility with dendronization.  相似文献   

13.
Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.  相似文献   

14.
Novel cellulose fibres (Biocelsol) were spun by traditional wet spinning technique from the alkaline solution prepared by dissolving enzyme treated pulp directly into aqueous sodium zincate (ZnO/NaOH). The spinning dope contained 6 wt.% of cellulose, 7.8 wt.% of sodium hydroxide (NaOH) and 0.84 wt.% of zinc oxide (ZnO). The fibres were spun into 5% and 15% sulphuric acid (H2SO4) baths containing 10% sodium sulphate (Na2SO4). The highest fibre tenacity obtained was 1.8 cNdtex−1 with elongation of 15% and titre of 1.4 dtex. Average molecular weights and shape of molecular weight distribution curves of the celluloses from the novel wet spun cellulosic fibre and from the commercial viscose fibre were close to each other.  相似文献   

15.
Siwei Liu  Feng Zhang  Yi Zhang  Jiarui Xu 《中国化学》2013,31(10):1315-1320
A series of linear poly glycidol copolymers, tethering with both alkene and hydroxyl groups, were prepared by a combination of anionic ring-opening polymerization (ROP) using specific reactions of ethoxy ethyl glycidyl ether (EEGE) and allyl glycidyl ether (AGE) firstly, and subsequently removal of the protection group of glycidol in EEGE to achieve the linear copolymer pendant with both hydroxyl groups and double bonds. The EEGE/AGE monomer reactivity ratio is measured to be 3.30/1.13. The chemical compositions of the as-synthesized polymers were characterized by tH NMR and GPC, and the glass transition temperatures (Tg) of as-synthesized polymers were determined by DSC. The final copolymers have abundant double bonds and hydroxyl as side groups. Furthermore, the ratio of the double bonds to hydroxyl groups can be controlled by the ratio of the starting materials in a wide range.  相似文献   

16.
New reactive unsaturated starch derivatives, 1‐allyloxy‐2‐hydroxy‐propyl‐starches (AHP‐starches), were synthesized by the reaction of waxy maize starch (WMS) and amylose‐enriched maize starch (AEMS) with allyl glycidyl ether in a heterogeneous alkaline suspension containing NaOH and Na2SO4. The degree of substitution (DS) was determined by 1H NMR spectroscopy, and a DS of 0.20 ± 0.01 was found for both AHP‐WMS and AHP‐AEMS, respectively. The AHP derivatives of WMS and AEMS were further characterized with 1H and 13C NMR. It was shown that the AHP substitution was located on the C‐6 hydroxyl group of the glucose residues in the starch. The substitution pattern of the AHP groups along the polymer chain was randomly clustered, as determined by enzymatic digestion using pullulanase, α‐amylase, and amyloglucosidase, followed by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the digestion products. With X‐ray diffraction and scanning electron microscopy, no changes in the granular morphology and crystallinity between the unmodified starches and AHP‐starches were detected. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2734–2744, 2007  相似文献   

17.
Cyanoethyl celluloses (CECs) with different degree of substitution (DS) were synthesized by homogeneous reaction of cellulose (cotton linter pulp and absorbent cotton) with acrylonitrile (AN) in LiOH/urea aqueous solutions. The reaction showed quick reactivity and high transfer efficiency of etherification agent. The DS values of CECs were controlled by varying the molar ratio of AN to anhydroglucose unit (AGU) and the cellulose concentration. The DS values of the CEC-1–CEC-10 increased from 0.27 to 1.78 with increasing molar ratio of AN to AGU from 0.5:1 to 9:1. While the CEC-11–CEC-21 with DS values of 0.26–1.81 could be obtained by adjusting the molar ratio from 1:1 to 27:1. The relative reactivity of hydroxyl groups is in the order of C-6 > C-2 > C-3. The DS values of the water-soluble derivatives are in the range of 0.47–1.01. As the DS values increase to 1.37, CEC samples can not be dissolved in water or dilute alkali solution, but have good solubility in organic solvents, such as DMSO, DMF and pyridine. The dilute solution properties and molecular parameters of the CEC samples were studied by static light scattering and dynamic light scattering. The results indicated that the water-soluble samples could form a small number of aggregates spontaneously in 0.9 wt% NaCl aqueous solution, while the water-insoluble samples showed extended stiff chains in 0.5% LiCl–DMAc.  相似文献   

18.
Bacterial cellulose (BC) is a form of cellulose synthesized by microorganisms, which has unique structure properties and differs from plant cellulose. Up to now, chemical modification of BC has not been studied widely. This paper aims to prepare sodium bacterial cellulose sulfate (SBS) in N,N‐dimethylformamide (DMF) with a ClSO3H/DMF complex as the sulfating agent. SBSs with diverse degree of sulfation (DS, 0.04–0.86) were synthesized. The system could change from heterogeneous to homogeneous during the sulfation. Regarding to the DS, the optimal ClSO3H amount and reaction time were 6 mol/mol anhydroglucose unit and 4 h, respectively. DS increased a little when increasing the temperature, while the yield decreased significantly. SBSs with DS > 0.24 were soluble in deionized water. Carbon nuclear magnetic resonance spectroscopy revealed that the sulfation prefers to take place in the order of C‐6 > C‐2 > C‐3. The X‐ray diffraction profiles indicated that the crystalline structure of BC was destroyed during sulfation. BC has better reactivity than microcrystalline cellulose in both sulfation and depolymerization processes. SBS is a potential biomaterial. However, BC depolymerized obviously in present sulfation, which forbids application of SBS in material. Moisture of the reaction mixture should be removed as completely as possible to guarantee efficient sulfation and decrease depolymerization. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The properties of films of carboxymethyl cellulose, CMC, of different degree of substitution, DS, have been examined by the use of perichromic indicators (probes). The film properties that have been determined are: empirical polarity, ET(33); “acidity”, α; “basicity”, β; and dipolarity/polarizability, π*. This has been achieved by employing the following perichromic probes: 4-nitroaniline, 4-nitroanisole, 4-nitro-N,N-dimethylaniline, and 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, WB. The correlations between both ET(33)- or π* and DS were found to be linear; that between β and DS is a second order polynomial; no obvious correlation was found between α and DS. The polarities of CMC films are in the range of those of butyl alcohols. As models for CMC, we have employed cellulose plus CMC of high DS; oxidized cellulose with degree of oxidation = 0.5; sodium glucuronate. The former model behaved akin to CMC, but the plots of the perichromic properties versus DS showed different slopes/intercepts. FTIR data and molecular dynamics simulations on the solvation of WB have shown that this difference can be traced to more efficient hydrogen bonding between the film of the model and the probe. This affects the intra-molecular charge-transfer energy of the latter, leading to different responses to the variation of DS. Based on the excellent linear correlation between ET(33) and DS, for CMC from different origins, we suggest that perichromism is a simple, accurate, and expedient alternative for the determination of DS of the biopolymer derivative.  相似文献   

20.
The synthesis and polymerization of a series of perhaloalkyl allyl and vinyl ethers derived from perhaloketones is described. Data on the critical surface tension of wetting (γc) for high molecular weight polymers of heptafluoroisopropyl vinyl ether and low molecular weight poly(heptafluoroisopropyl allyl ether) is also presented. Preparation of the allyl ethers is a one-step, high-yield displacement reaction between the potassium fluoride–perhaloacetone adduct and an allyl halide, such as allyl bromide. The vinyl ethersare prepared by a two-step process which involves displacement of halide from a 1,2-dihaloethane with a KF–perhaloacetone adduct and dehydrohalogenation of the 1-halo-2-perhaloalkoxyethane to a vinyl ether. Low molecular weight polymers were obtained with heptafluoroisopropyl allyl ether by using a high concentration of a free-radical initiator. The low molecular weight poly(heptafluoroisopropyl allyl ether) had a γc of 21 dyne/cm. No polymer was obtained with tributylborane–oxygen or with VCl3–AIR3, with gamma radiation, or by exposure to ultraviolet light. High molecular weight polymers were obtained from heptafluoroisopropyl vinyl either by using either lauryl peroxide or ultraviolet light but not by exposure to BF3–etherate. The γc for poly(heptafluoroisopropyl vinyl ether) ranged from 14.2 to 14.6 dyne/cm., and the significance of this value is discussed in relation to the γc for poly(heptafluoroisopropyl acrylate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号