首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
朱广平  顾鑫  韩笑  殷敬伟 《声学学报》2020,45(3):325-333
针对北极冰层冰水界面具有小尺度粗糙界面的情况,给出由冰层造成的混响平均强度的理论预报公式。首先将北极冰层等效为具有粗糙界面的弹性介质,并且采用小粗糙度微扰理论在精细拟合粗糙度谱的基础上,建立粗糙冰层的三维散射强度模型,然后建立三维双基地声呐几何模型确定有效散射区域,最后给出双基地冰下混响平均强度的估算公式,并在所拟合的粗糙度谱的情况下,利用该预报公式计算双基地声呐配置参数和海冰物理及声学特性对冰下混响强度的影响算例。数值仿真表明该公式能够估算出北极冰下双基地声呐产生的混响平均强度,并且分析出了时延、基线长度等声呐配置参数和冰层声速比、密度比等海冰物理参数会对混响强度造成的影响。声呐的配置参数主要影响散射的有效面积,海冰的物理参数则影响着冰层的散射强度。其中,冰层声速比不仅影响混响强度的大小,还会影响混响强度随时间的衰减速度。   相似文献   

2.
酸蚀深度对熔石英三倍频激光损伤阈值的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
 采用干涉仪和台阶仪测试蚀刻深度随时间的变化,结合材料去除速率测量,研究了HF酸蚀液对熔石英表面蚀刻的影响。测试了蚀刻后损伤阈值和表面粗糙度的变化。研究表明,熔石英表面重沉积层厚度约16 nm,亚表面缺陷层大于106 nm;重沉积层去除后损伤阈值增大,随亚表面缺陷层暴露其阈值先降低后又增加,最后趋于稳定;然而,随蚀刻时间的增加,其表面粗糙度增大。分析表明,蚀刻到200 nm能有效地提高熔石英的低损伤阈值,有利于降低初始损伤点数量和提高熔石英表面的机械强度。  相似文献   

3.
《工程热物理学报》2021,42(5):1200-1204
风力机叶片覆冰现象严重影响其安全、经济运行,开展覆冰厚度在线测量技术研究具有重要的实际意义。本文提出了共面波导-微带耦合谐振器测量覆冰厚度的方法。通过耦合谐振器等效电路分析,得到了介质厚度测量的理论关系式;建立了耦合谐振器电磁场仿真模型,在谐振器表面覆盖不同介电常数、不同厚度的介质,计算得到了谐振器的谐振频率,进而得到了测量介质厚度的通用关系式,给出了谐振器谐振频率、介电常数和介质厚度之间的函数关系;制作了共面波导-微带耦合谐振器,开展了谐振器表面覆冰实验,测量厚度和实际厚度的相对误差在15%以内,验证了共面波导-微带耦合谐振器测量风力机叶片表面覆冰厚度的可行性。该方法对研究飞机机翼覆冰及其他介质厚度测量具有一定借鉴意义。  相似文献   

4.
背光阴影成像是表征ICF冷冻靶燃料冰层的有效方法。基于背光阴影成像技术,冷冻靶燃料冰层原位表征技术能原位实时监测靶丸内燃料气体相变与冰层均化过程,得到打靶零前时刻燃料冰层厚度和粗糙度信息,为物理实验提供准确参数。在冷冻靶制备实验中,根据背光阴影成像的光线追迹模型和实验测得的阴影图像中的亮环位置,计算得到了均化后冷冻靶中燃料冰层的厚度以及内表面粗糙度。  相似文献   

5.
分别采用固相反应法和胶晶模板法制备出了块状和多孔型的钙钛矿锰热致变色材料。研究了不同制备工艺对材料居里温度的影响,探讨了不同掺杂比例、表面粗糙度和表面微结构对材料表面辐射特性的影响。结果表明,由于制备工艺不同,两种不同结构钙钛矿锰材料的居里温度相差较大,但其发射率均随温度升高而增大;而在室温以上,多孔材料的发射率明显比块状材料要大。同时,表面粗糙度对材料表面辐射特性的影响较大。  相似文献   

6.
采用自制的As_2Se_3玻璃棒,制备了具有不同厚度、背面粗糙度和表面光洁度的样品,借助红外光谱椭偏仪测试了样品折射率,通过光学模型拟合得到了其折射率参数。对比分析了厚度、背面粗糙度和表面光洁度对样品折射率的影响。结果表明:样品厚度、背面粗糙度和表面光洁度都会明显影响椭偏仪的测量精度,其中表面光洁度是关键因素。样品厚度应控制在1~3mm,同时增大样品背面粗糙度和样品表面光洁度,可显著提高椭偏仪的测试精度。  相似文献   

7.
风力机叶片覆冰会使风力发电效率下降并且威胁风力机组的安全运行。本文采用Fluent中的欧拉多相流模型,通过添加质量传递以及对流换热系数计算模型等,实现了对风力机叶片表面覆冰的二维数值模拟,结果表明:覆冰主要出现在叶片的前缘迎风面,且驻点附近覆冰最多;当增大翼型攻角时,驻点向翼型的下部尾部移动,最大覆冰位置也相应地移动;随着时间的推移,叶片表面覆冰增多。  相似文献   

8.
为实现对惯性约束聚变(ICF)靶用空心玻璃微球(HGM)质量及性能的有效调控,研究了精炼温度对HGM批次产品中A级HGM百分数的影响,实验测试了不同精炼温度条件下HGM批次的平均直径和壁厚、抗张强度、对氘气的保气性能、表面粗糙度及其随时间的变化。测试结果表明:升高精炼温度并不是总有利于提高HGM的质量和性能; 当精炼温度低于1600 ℃时,满足ICF物理实验参数要求的HGM百分数随着精炼温度的增高而增加,但是,当精炼温度高于1600 ℃时,HGM的合格率则随着精炼温度的增高而显著下降; 随着精炼温度的升高,HGM的抗拉强度快速提高,表面粗糙度快速下降; HGM在室温下对氘气的阻气能力快速下降,且在大气中的潮解速率和程度显著降低。  相似文献   

9.
该文实验研究了退火温度对声表面波检测器电极表面粗糙度的影响。电极表面的粗糙度随着退火温度不同而变化,实验中分别选择常温(25?C)、200?C和300?C作为退火温度对两种镀膜方式制备的声表面波器件进行退火,最后得到退火温度和电极表面粗糙度的对应关系。从实验结果来看,退火温度为200?C时,得到的电极表面粗糙度最大。该研究为声表面波检测器表面粗糙度优化及灵敏度提升提供了基础。  相似文献   

10.
为满足惯性约束聚变(ICF)对聚酰亚胺(PI)靶丸的要求,研究了气相沉积过程单体加热温度对PI薄膜厚度的影响并测试其均匀性,测试了脉冲敲击模式下复合微球的表面质量。研究了薄膜热环化过程中的结构变化,并对所得PI薄膜进行了热稳定性分析。研究结果表明:脉冲敲击下制备所得复合微球表面粗糙度均方根值波动在29~45nm之间,在相同时间内其薄膜厚度随单体加热温度的增加而增加,通过调节不同单体加热温度,可将薄膜厚度控制在一定范围;薄膜厚度测试发现其较为均匀,横向和纵向各点厚度相差不足1μm;热环化后聚酰胺酸转化为PI,CONH与COOH结合形成C-N键;热重分析数据显示PI薄膜热稳定性较好,600℃左右才开始大量分解。  相似文献   

11.
Despite the opportunity to manipulate the water freezing via superhydrophobic materials, their commercial use for passive icing protection is still questioned, since the combined effect of surface morphology, air cushion arrangement, roughness, chemistry and film thickness on the icephobic properties of a given non-wettable solid remains unexplored. This article addresses the existing research gaps by studying the ice nucleation dynamics at the contact line of various superhydrophobic soot-based surfaces, potentially applicable in cryobiology for enhancing the existing cryopreservation technologies. We examine the freezing time and freezing temperature of water droplets settled on three groups of soot coatings with divergent morphochemical features, adjusted by modifying the samples with alcohol, fluorocarbon and/or silver hydrogen fluoride. Our results demonstrate the appearance of a new “contour” freezing mode, where the droplet shell crystallizes simultaneously with the contact interface, whilst the soot's chemical bonds along with some of its physical characteristics govern the ice formation.  相似文献   

12.
The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence (LIF) technique. The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate. From the obtained fluorescence images, the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed. It was found that, at the beginning of the droplet freezing process, liquid water turned into ice at a very fast rate. Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process. In addition, the freezing time was found to reduce with the decrease of the test plate temperature. Besides, when the test plate temperature is relatively high, the effect of droplet volume on the freezing time is very significant. Over all, we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.  相似文献   

13.
A mathematical multi-zone ice accretion model used in the numerical simulation of icing on airfoil surface based on three water states, namely, continuous film, rivulets and beads is studied in this paper. An improved multi-zone roughness model is proposed. According to the flow state of liquid water and film flow, rivulets flow governing equations are established to calculate film mass distribution, film velocity, rivulet wetness factor and rivulet mass distribution. Force equilibrium equations of droplet are used to establish the critical conditions of water film broken into rivulets and rivulets broken into beads. The temperature conduction inside the water layer and ice layer is considered. Using the proposed model ice accretion on a NACA0012 airfoil profile with a $4^◦$ angle of attack under different icing conditions is simulated. Different ice shapes like glaze ice, mixed ice and rime ice are obtained, and the results agree well with icing wind tunnel experiment data. It can be seen that, water films are formed on the surface, and heights of the films vary with icing time and locations. This results in spatially-temporally varying surface roughness and heat transfer process, ultimately affects the ice prediction. Model simulations indicate that the process of water film formation and evolution cannot be ignored, especially under glaze ice condition.  相似文献   

14.
Anti-icing performance of superhydrophobic surfaces   总被引:6,自引:0,他引:6  
This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size ∼80 μm) in a wind tunnel at subzero temperature (−10 °C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.  相似文献   

15.
Research on the icephobic properties of fluoropolymer-based materials   总被引:2,自引:0,他引:2  
Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at −8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at −8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to −8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.  相似文献   

16.
Ice adhesion on super-hydrophobic surfaces   总被引:4,自引:0,他引:4  
In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.  相似文献   

17.
Several properties of metallic foams such as their low density, high mechanical strength and good coefficients of heat and mass transfer make them attractive for applications in catalysis. Important modifications in the composition and morphology of the metallic foam surfaces can take place when they are submitted to treatments at high temperatures. These surface changes are due to the migration of some elements from the metallic core to the pore surface, thus inducing a passivation via an oxide layer formation. This new layer avoids further metallic segregation and generates a surface roughness, both effects having a significant impact on the catalytic coating quality. This work analyzes the effects of calcination temperature and time on the chemistry and morphology of the metallic surface corresponding to the AISI 314 stainless steel foams of 50 and 60 ppi. The chemical and morphological surface changes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray (EDX) analysis and Laser Raman Spectroscopy (LRS). The application of high temperature treatments on AISI 314 foams promotes the formation of a surface layer containing chromium oxide and spinel-type compounds of chromium, iron and manganese. The optimum treatment temperature for this type of structures seems to be 900 °C because both the adhesion and thickness of the layer formed are adequate. For the sample with smaller pores (60 ppi) the optimal treatment time is close to 2 h and for that with larger pores (50 ppi) the recommended time is 20 h. Under these conditions, a compromise is found between adhesion, thickness and surface roughness, suitable for the subsequent deposition of catalytic material.  相似文献   

18.
惯性约束聚变(ICF)冷冻靶中氘氘(D2)、氘氚(DT)等燃料冰层在靶丸中的分布由靶丸所处的温度场决定。在氘氘冷冻靶中,垂直温度梯度引起的气-液界面张力梯度可以抵消重力作用,使氘氘液体在靶丸内均匀分布;然后在氘氘的三相点附近缓慢降温,可以实现燃料冰层的均化。在氘氘冷冻靶均化实验系统上,采用温度梯度结合制冷速率与制冷过程控制的方法,实现了1mm直径、30μm壁厚的辉光放电聚合物(GDP)靶丸中氘氘冰层的均化,对背光阴影图像中亮环位置进行分析表明:氘氘冰层的平均厚度为185.56μm,均匀度为80.2%,模数-功率谱曲线中模数2~100对应的内表面粗糙度为2.26μm。  相似文献   

19.
In this work, we have prepared a series of samples with five representative surface wettabilities: i.e. superhydrophilic, hydrophilic, critical, hydrophobic and superhydrophobic. These samples were in situ observed the freezing process of water droplets on clean and artificially contaminated surfaces to investigate the relationship between surface wettability and ice formation. Ice accretion was also tested by spraying supercooled water to samples at different horizontal inclination angles (HIA). Surface topography was proved to be essential to the icing through heterogeneous nucleation. However, the correlation between surface wettability and ice formation was not observed. Finally, we found that the superhydrophobic surface clearly exhibited reduced ice accumulation in the initial stage of ice formation associated with the lower sliding angle (SA) of water droplets.  相似文献   

20.
采用分子动力学方法模拟铜铝纳米薄膜相对侧向移动的相互作用能。研究了铜薄膜的侧向位移从0Å到50Å时温度、相互作用间距、表面形貌和表面粗糙度对作用能的影响。结果表明,相互作用强度随温度的增加而增大,随相互作用间距的减小而增大,随表面粗糙度的增大而减小。为研究薄膜在纳米尺度的相互作用提供了一个新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号