首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation. The present QCT calculations show that migration of hydrogen atoms, leading to the rearrangement CH(3)SH(+) <--> CH(2)SH(2)(+), is significant at the collision energies considered (6.5-34.7 eV) and that the formation of CH(3)(+), CH(3)S(+), and CH(2)(+) cations takes place primarily by a "shattering" mechanism in which the products are formed just after the collision. The theoretical product abundances are found to be in qualitative agreement with the experimental data. However, at high collision energies, the calculated total cross sections for the formation of CH(3)(+) and CH(2)SH(+) cations are noticeably larger than the experimental determinations. Several features of the dynamics of the CID processes are discussed.  相似文献   

2.
We present a study of energy transfer in collisions of Ar with methane and perfluoromethane at hyperthermal energies (E(coll) = 4-10 eV). Quasiclassical trajectory calculations of Ar + CX(4) (X = H, F) collisions indicate that energy transfer from reagents' translation to internal modes of the alkane molecule is greatly enhanced by fluorination. The reasons for the enhancement of energy transfer upon fluorination are shown to emerge from a decrease in the hydrocarbon vibrational frequencies of the CX(4) molecule with increasing the mass of the X atom, and to an increase of the steepness of the Ar-CX(4) intermolecular potential. At high collision energies, we find that the cross section of Ar + CF(4) collisions in which the amount of energy transfer is larger than needed to break a C-F bond is at least 1 order of magnitude larger than the cross sections of Ar + CH(4) collisions producing CH(4) with energy above the dissociation limit. In addition, collision-induced dissociation is detected in short time scales in the case of the fluorinated species at E(coll) = 10 eV. These results suggest that the cross section for degradation of fluorinated hydrocarbon polymers under the action of nonreactive hyperthermal gas-phase species might be significantly larger than that of hydrogenated hydrocarbon polymers. We also illustrate a practical way to derive intramolecular potential energy surfaces for bond-breaking collisions by improving semiempirical Hamiltonians based on grids of high-quality ab initio calculations.  相似文献   

3.
A full dimensional ab initio potential energy surface for the CH5+ system based on coupled cluster electronic structure calculations and capable of describing the dissociation of methonium ion into methyl cation and molecular hydrogen (J. Phys. Chem. A 2006, 110, 1569) is used in quasiclassical trajectory calculations of the reaction CH3++HD-->CH2D++H2 for low collision energies of relevance to astrochemistry. Cross sections for the exchange are obtained at several relative translational energies and a fit to the energy dependence of the cross sections is used to obtain the rate constant at temperatures between 10 and 50 K. The calculated rate constant at 10 K agrees well with the previously reported experimental value. Internal energy distributions of the products are presented and discussed in the context of zero-point energy "noncompliance".  相似文献   

4.
We investigate the role of vibrational energy excitation of methane and two deuterated species (CD(4) and CH(2)D(2)) in the collision-induced dissociation (CID) process with argon at hyperthermal energies. The quasi-classical trajectory method has been applied, and the reactive Ar + CH(4) system has been modeled by using a modified version of the CH(4) potential energy surface of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339) and the Ar-CH(4) intermolecular potential function obtained by Troya (J. Phys. Chem. A 2005, 109, 5814). This study clearly shows that CID is markedly enhanced with vibrational excitation and, to a lesser degree, with collision energy. In general, CID increases by exciting stretch vibrational modes of the reactant molecule. For the direct dissociation of CH(4), however, the CID cross sections appear to be essentially independent of which vibrational mode is initially excited. In all situations studied, the CID cross sections are always greater for the Ar + CD(4) reaction than for the Ar + CH(4) one, the Ar + CH(2)D(2) being an intermediate situation. A detailed analysis of the energy transfer processes, including their relation with CID, is also presented.  相似文献   

5.
We present a theoretical study of the O(3P) + CH4 --> OH + CH3 reaction using electronic structure, kinetics, and dynamics calculations. We calculate a grid of ab initio points at the PMP2/AUG-cc-pVDZ level to characterize the potential energy surface in regions of up to 1.3 eV above reagents. This grid of ab initio points is used to derive a set of specific reaction parameters (SRP) for the MSINDO semiempirical Hamiltonian. The resulting SRP-MSINDO Hamiltonian improves the quality of the standard Hamiltonian, particularly in regions of the potential energy surface beyond the minimum-energy reaction path. Quasiclassical-trajectory calculations are used to study the reaction dynamics with the original and the improved MSINDO semiempirical Hamiltonians, and a prior surface. The SRP-MSINDO semiempirical Hamiltonian yields OH rotational distributions in agreement with experimental results, improving over the results of the other surfaces. Thermal rate constants estimated with Variational Transition State Theory using the SRP-MSINDO Hamiltonian are also in agreement with experiments. Our results indicate that reparametrized semiempirical Hamiltonians are a good alternative to generating potential energy surfaces for accurate dynamics studies of polyatomic reactions.  相似文献   

6.
Quasiclassical trajectory calculations are employed to investigate the dynamics of collision-induced dissociation (CID) of Cr(CO)6 + with Xe atoms at collision energies ranging from 1.3 to 5.0 eV. The trajectory simulations show that direct elimination of CO ligands, during the collision, becomes increasingly important as the collision energy increases. In a significant number of cases, this shattering mechanism is accompanied with a concomitant formation of a transient Xe-Cr(CO)x +(x<6) complex. The calculated results are in very good agreement with the experimental results presented previously [F. Muntean and P. B. Armentrout, J. Chem. Phys. 115, 1213 (2001)]. In particular, the computed cross sections and scattering maps for the product ions Cr(CO)x +(x=3-5) compare very favorably with the reported experimental data. However, in contrast with the conclusions of the previous study, the present calculations suggest that CID dynamics for this system exhibits a significant impulsive character rather than proceeding via a complex surviving more than a rotational period.  相似文献   

7.
An ab initio interpolated potential energy surface (PES) for the F + CH4 reactive system has been constructed using the interpolation method of Collins and co-workers. The ab initio calculations have been performed using second-order M?ller-Plesset (MP2) perturbation theory to build the initial PES. Scaling all correlation (SAC) methodology has been employed to improve the ab initio calculations and to construct a dual-level PES. Using this PES, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations and internal energy distributions has been carried out for the F + CH4 and F + CD4 reactions and the theoretical results have been compared with the available experimental data.  相似文献   

8.
The SH + CH(3) product channel for the photodissociation of CH(3)SH at 204 nm was investigated using the sliced velocity map ion imaging technique with the detection of CH(3) products using state selective (2+1) resonance enhanced multiphoton ionization (REMPI). Images were measured for CH(3) formed in the ground and excited vibrational states (v(2) = 0, 1, and 2) of the umbrella mode from which the correlated SH vibrational state distributions were determined. The vibrational distribution of the SH fragment in the SH + CH(3) channel at 204 nm is clearly inverted and peaks at v = 1. The highly negative anisotropy parameter of the CH(3) (v(2) = 0, 1, and 2) products is indicative of a fast dissociation process for C-S bond cleavage. Two kinds of slower CH(3) products were also observed (one of which was partly vibrationally resolved) that are assigned to a two-step photodissociation processes, in which the first step is the production of the CH(3)S (X(2)E) radical via cleavage of the S-H bond in CH(3)SH, followed by probe laser photodissociation of nascent CH(3)S radicals yielding CH(3)(X(2)A(1), v(2) = 0-2) + S((3)P(j)/(1)D) products.  相似文献   

9.
Monte Carlo quasiclassical trajectory calculations have been carried out for the reaction Cl + Hl → HCl + I for 300, 1000, and 2000 K. A semi-empirical potential-energy surface (London equation) was obtained by “transfering” parameters from surfaces computed for other reaction systems. The computed results are in general accord with experimental measurements. Thermal rate coefficients, differential scattering cross sections, and product vibrational and rotational distributions were computed for the three temperatures. Angular scattering distributions are in agreement with experiment only at elevated temperatures.  相似文献   

10.
Selective bond dissociation energies for CH3SH and CH3CH2SH radical cations were evaluated with G1, G2, G2MP2, B3LYP, BLYP, and SVWN computational methods. It was determined that both G2 and CBSQ evaluate very accurate bond dissociation energies for thiol radical cations, while gradient-corrected BLYP computes the best energies of three employed DFT methods. For the CH3CH2SH radical cation, new, higher than previously estimated selective bond dissociation energies were suggested. Received: 10 September 1997 / Accepted: 9 September 1998 / Published online: 11 November 1998  相似文献   

11.
Detailed quasiclassical trajectory calculations of the reaction H+CH4(nu3 = 0,1)-->CH3 + H2 using a slightly updated version of a recent ab initio-based CH5 potential energy surface [X. Zhang et al., J. Chem. Phys. 124, 021104 (2006)] are reported. The reaction cross sections are calculated at initial relative translational energies of 1.52, 1.85, and 2.20 eV in order to make direct comparison with experiment. The relative reaction cross section enhancement ratio due to the excitation of the C-H antisymmetric stretch varies from 2.2 to 3.0 over this energy range, in good agreement with the experimental result of 3.0 +/- 1.5 [J. P. Camden et al., J. Chem. Phys. 123, 134301 (2005)]. The laboratory-frame speed and center-of-mass angular distributions of CH3 are calculated as are the vibrational and rotational distributions of H2 and CH3. We confirm that this reaction occurs with a combination of stripping and rebound mechanisms by presenting the impact parameter dependence of these distributions and also by direct examination of trajectories.  相似文献   

12.
《Chemical physics letters》1988,151(6):507-510
A crossed-beam study of the collision-induced dissociation of CH4+ by Ar was carried out at a center-of-mass (c.m.) collision energy of 5.5 eV. The scattering shows three patterns for the formation of CH2+, (1) large-angle scattering at preferred impact parameters with little internal excitation of the products, (2) scattering near the c.m. with nearly all collision energy transferred into products internal energy and (3) superelastic scattering, i.e. conversion of internal energy to translational energy, implying the reaction is initiated by a long-lived excited state of CH4+ generated by electron impact ionization of methane. No previous evidence exists, to our knowledge, that excited states of CH4+ thus generated may have microsecond lifetimes.  相似文献   

13.
We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.  相似文献   

14.
Large-scale classical trajectory calculations have been performed to study the reaction Ar + CH4--> CH3 +H + Ar in the temperature range 2500 < or = T/K < or = 4500. The potential energy surface used for ArCH4 is the sum of the nonbonding pairwise potentials of Hase and collaborators (J. Chem. Phys. 2001, 114, 535) that models the intermolecular interaction and the CH4 intramolecular potential of Duchovic et al. (J. Phys. Chem. 1984, 88, 1339), which has been modified to account for the H-H repulsion at small bending angles. The thermal rate coefficient has been calculated, and the zero-point energy (ZPE) of the CH3 product molecule has been taken into account in the analysis of the results; also, two approaches have been applied for discarding predissociative trajectories. In both cases, good agreement is observed between the experimental and trajectory results after imposing the ZPE of CH3. The energy-transfer parameters have also been obtained from trajectory calculations and compared with available values estimated from experiment using the master equation formalism; in general, the agreement is good.  相似文献   

15.
Translationally hot H collisions with the acetylene are investigated using quasiclassical trajectory calculations, on a recent full-dimensional ab initio-based potential energy surface. Three outcomes are focused on: non-reactive energy transfer via prompt collisions, non-reactive energy transfer via the formation of the vinyl complex, and reactive chemical H-atom exchange, also via complex formation. The details of these outcomes are presented and correlated with the collision lifetime. Large energy transfer is found via complex formation, which can subsequently decay back to reactants, a non-reactive event, or to new products, a reactive event. For the present system, these two events are experimentally indistinguishable.  相似文献   

16.
An ab initio interpolated potential energy surface (PES) for the Cl+CH(4) reactive system has been constructed using the interpolation method of Collins and co-workers [J. Chem. Phys. 102, 5647 (1995); 108, 8302 (1998); 111, 816 (1999); Theor. Chem. Acc. 108, 313 (2002)]. The ab initio calculations have been performed using quadratic configuration interaction with single and double excitation theory to build the PES. A simple scaling all correlation technique has been used to obtain a PES which yields a barrier height and reaction energy in good agreement with high level ab initio calculations and experimental measurements. Using these interpolated PESs, a detailed quasiclassical trajectory study of integral and differential cross sections, product rovibrational populations, and internal energy distributions has been carried out for the Cl+CH(4) and Cl+CD(4) reactions, and the theoretical results have been compared with the available experimental data. It has been shown that the calculated total reaction cross sections versus collision energy for the Cl+CH(4) and Cl+CD(4) reactions is very sensitive to the barrier height. Besides, due to the zero-point energy (ZPE) leakage of the CH(4) molecule to the reaction coordinate in the quasiclassical trajectory (QCT) calculations, the reaction threshold falls below the barrier height of the PES. The ZPE leakage leads to CH(3) and HCl coproducts with internal energy below its corresponding ZPEs. We have shown that a Gaussian binning (GB) analysis of the trajectories yields excitation functions in somehow better agreement with the experimental determinations. The HCl(v'=0) and DCl(v'=0) rotational distributions are as well very sensitive to the ZPE problem. The GB correction narrows and shifts the rotational distributions to lower values of the rotational quantum numbers. However, the present QCT rotational distributions are still hotter than the experimental distributions. In both reactions the angular distributions shift from backward peaked to sideways peaked as collision energy increases, as seen in the experiments and other theoretical calculations.  相似文献   

17.
This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electronic ground- and excited-state radicals undergo competitive dissociation to both product channels. The experimental product branching to CH(3) + CO(2) from the ground-state radical, about 70%, is orders of magnitude larger than Rice-Ramsperger-Kassel-Marcus (RRKM)-predicted branching, suggesting that previously calculated barriers to the CH(3)OCO --> CH(3) + CO(2) reaction are dramatically in error. Our electronic structure calculations reveal that the cis conformer of the transition state leading to the CH(3) + CO(2) product channel has a much lower barrier than the trans transition state. RRKM calculations using this cis transition state give product branching in agreement with the experimental branching. The data also suggest that our experiments produce a low-lying excited state of the CH(3)OCO radical and give an upper limit to its adiabatic excitation energy of 55 kcal/mol.  相似文献   

18.
19.
The recently proposed ab initio single-sheeted double many-body expansion potential energy for the methylene molecule has been used to perform quasiclassical trajectory (QCT) calculations for the title reaction. Thermal and initial state-specific (v = 0, j = 0) rate constants for the C((1)D) + H(2)/HD/D(2) reactions have been obtained over a wide range of temperatures. Cross sections for the reaction C((1)D) + H(2) and its deuterated isotopes have also been calculated, as well as the CD/CH branching ratios for the C((1)D) + HD reaction. It is found that the CD + H product channel in the C((1)D) + HD reaction is preferred relative to the CH + D channel. The estimated rate constants are predicted to be in the order k(H2) > k(HD) > k(D2) and the calculated cross sections and rate constants compared with available theoretical and experimental data.  相似文献   

20.
The reaction between methyl and hydroxyl radicals has been studied in reflected shock wave experiments using narrow‐linewidth OH laser absorption. OH radicals were generated by the rapid thermal decomposition of tert‐butyl hydroperoxide. Two different species were used as CH3 radical precursors, azomethane and methyl iodide. The overall rate coefficient of the CH3 + OH reaction was determined in the temperature range 1081–1426 K under conditions of chemical isolation. The experimental data are in good agreement with a recent theoretical study of the reaction. The decomposition of methanol to methyl and OH radicals was also investigated behind reflected shock waves. The current measurements are in good agreement with a recent experimental study and a master equation simulation. © 2008 Wiley Periodicals, Inc. 40: 488–495, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号