首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

2.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

3.
采用基于密度泛函理论(DFT)的平面波赝势法模拟了O2和CN分子在铜活化闪锌矿(110)表面的吸附. 结果表明: 铜活化后闪锌矿表面的铜原子3d轨道处于费米能级附近, 增强了闪锌矿表面的活性. 未活化闪锌矿表面不能吸附O2, 活化后闪锌矿表面的铜原子和硫原子提供电子填入氧的反键π2p*轨道从而形成吸附键. CN分子吸附模拟表明, 铜活化增强了CN分子与闪锌矿表面的吸附作用. Cu原子d轨道与C原子反键p轨道作用形成反馈π键, 同时C原子s轨道与Cu原子sp轨道作用形成共价键; CN分子中N原子与闪锌矿表面S原子发生相互作用.  相似文献   

4.
采用广义梯度密度泛函理论结合周期性平板模型,计算了O2在α-U(001)表面吸附的几何和电子结构,并对H2、O2的吸附特性进行了对比分析。结果表明:O2分子在α-U(001)面上呈强解离化学吸附,吸附能为9.54~10.22eV,O-O距离较大的D+D-II构型最为稳定;吸附后表层U原子向上迁移,同时伴随着褶皱的产生;解离O原子与表面U原子的相互作用主要是离子键合,伴随着较弱的源于U5f/6d-O2p轨道杂化的共价键合;O原子的扩散能垒小于0.3eV,易于在U表面扩散迁移;O2分子在U表面的吸附强度较H2分子要大得多,对U表面结构的影响也更加显著。  相似文献   

5.
研究气体分子在固体表面吸附过程的化学和物理性质在气体传感器研究方面有着重要的意义,尤其是一些小分子与氧化物的作用受到人们广泛的关注.SnO2具有特殊的表面性质,是适合用于催化有机物的光催化剂,同时由于SnO2在易燃易爆危险气体和有机物的检测等方面有着特殊而广阔的应用前景,成为化学工作者研究的热点[1-3].  相似文献   

6.
刘璐  郑成航  高翔 《分子催化》2017,31(6):544-552
基于第一性原理密度泛函计算方法研究了NO在Mn_2O_3(110)面的吸附行为,计算了Mn_2O_3(110)面吸附NO和O_2的吸附构型的结构参数、吸附能和电子结构.结果表明,在Mn_2O_3(110)表面上,NO倾向于吸附在Mn top位,吸附前后的结构总能变化在-0.61~-1.29 eV之间,NO吸附后Mn吸附位周围的配位结构发生变化,使得Mn的电子向NO转移.进一步研究了吸附O_2后的Mn_2O_3表面再进一步吸附NO的行为,发现了ONOO*结构的形成.NO和O_2在表面共吸附形成ONOO*结构时的吸附能(-1.23和-1.39 eV)高于单纯吸附NO时的吸附能,此时Mn的电子向ONOO*结构转移,NO和O_2投影态密度的电子峰广泛交叠,说明成键原子之间有强共价键作用.  相似文献   

7.
The adsorption and the growth of ZnO on α-Al2O3(0001) surface at various temperatures were theoretically calculated by using a plane wave pseudopotentials (USP) method based on density functional theory.The average adsorption energy of ZnO at 400, 600 and 800 ℃ is 4.16±0.08, 4.25±0.11 and 4.05±0.23 eV respectively. Temperature has a remarkable effect on the structure of the surface and the interface of ZnO/α-Al2O3(0001). It is found that the Zn-hexagonal symmetry deflexion does not appear during the adsorption growth of ZnO at 400 ℃, and that the ZnO10-10 is parallel with the 10-10 of the α-Al2O3(0001), which is favorable for forming ZnO film with the Zn-terminated surface. It is observed from simulation that there are two kinds of surface structures in the adsorption of ZnO at 600 ℃: one is the ZnO surface that has the Zn-terminated structure, and whose 10-10 parallels the 10-10 of the substrate surface, and the other is the ZnO10-10 //sapphire 11-10 with the O-terminated surface. The energy barrier of the phase transition between these two different surface structures is about 1.6 eV, and the latter is more stable. Therefore,the suitable temperature for the thin film growth of ZnO on sapphire is about 600 ℃, and it facilitates the formation of wurtzite structure containing Zn-O-Zn-O-Zn-O double-layers as a growth unit-cell. At 600 ℃, the average bond length of Zn-O is 0.190±0.01 nm, and the ELF value indicates that the bond of (substrate)-O-Zn-O has a distinct covalent character, whereas the (Zn)O-Al (substrate) shows a clear character of ionic bond. However, at a temperature of 800 ℃, the dissociation of Al and O atoms on the surface of the α-Al2O3(0001) leads to a disordered surface and interface structure. Thus, the Zn-hexagonal symmetry structure of the ZnO film is not observed under this condition  相似文献   

8.
采用密度泛函理论中的广义梯度近似,计算了CO在α-U(001)表面的吸附、解离和扩散.结果表明:CO分子以CU3OU2构型化学吸附在α-U(001)表面,吸附能为1.78-1.99eV;吸附后表层U原子向上迁移,伴随着褶皱的产生;CO分子与表面U原子的相互作用主要是U原子的电子向CO分子最低空轨道2π*转移,以及CO2π*/5σ/1π-U6d轨道间杂化而生成新的化学键;CO解离吸附较分子吸附在能量上更为有利,h1(C)+h2(O)和h1(C)+h1(O)(h:空位)解离态吸附能分别为2.71和3.08eV;近邻三重穴位之间C、O原子的扩散能垒分别为0.57和0.14eV,预示O原子较C原子更易在U(001)表面扩散迁移.  相似文献   

9.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

10.
基于密度泛函理论(DFT)的第一性原理赝势法, 对MgF2(010)面及吸附Ag的构型进行了优化, 并计算了MgF2(010)面吸附Ag体系的吸附能、 电子结构和光学性能. 结果表明, MgF2(010)面能隙低于体相, 态密度分裂, 出现表面态. Ag在MgF2(010)面的吸附属于稳定的化学吸附, 最佳吸附位为最外层F的四重穴位. 吸附机理主要表现为Ag的4p轨道与第二层的Mg的2p和3s轨道之间发生相互作用, 有少量电荷从Ag向Mg迁移. 吸附Ag后, 可见光波段的光吸收增加, Ag吸附后将使体系在可见光波段出现吸收峰.  相似文献   

11.
运用自动电位滴定技术分别研究了在纳米α-Fe2O3,γ-Al2O3单一体系及其混合体系中矿物表面的酸碱性质。依据表面配位理论恒电容模式,计算了相应的表面酸碱配位常数。实验和计算结果表明,按照等表面积原则混合α-Fe2O3、γ-Al2O3纳米粒子得到混合体系,其表面化学反应并非是单一体系的简单叠加,而是存在着不同矿物表面间复杂的交互作用。其表面酸碱性质和吸附重金属离子的行为可以用单表面模型拟合,混合体系表面反应平衡模式和相应的酸碱反应平衡常数分别为:≡XOH+H+≡XOH2+lgK1=4.04≡XOH≡XO-+H+lgK2=-9.20根据重金属离子Cu2+、Pb2+、Zn2+在α-Fe2O3/γ-Al2O3混合体系表面的吸附行为,计算得出Cu2+、Pb2+、Zn2+在混合体系固体表面的配位反应平衡常数如下:≡XOH+M2+≡XOM++H+lgK=-2.50、-2.25、-3.75(M=Cu、Pb、Zn)  相似文献   

12.
气体分子在过渡族金属表面吸附是异相催化过程中的一个重要步骤.研究其在金属表面的吸附特性是了解其催化性能的基础,多年来一直是表面科学领域的研究热点.理论研究在解释吸附机理、实验现象以及证实实验结论的可靠性方面发挥着越来越重要的作用.本文使用密度泛函理论(DFT)研究了NO分子在中性及带正、负电荷的Au(111),Au(100),Au(310)和Au/Au(111)表面的吸附行为.研究结果表明,NO倾斜地吸附在金表面.在这种吸附构型中,Au原子的dz2轨道和NO分子的2π*轨道对称性匹配,并达到最大重叠.中性及带正、负电荷的Au(111),Au(100),Au(310)和Au/Au(111)表面不同吸附位对NO的反应活性不同,NO易吸附于各个金表面的顶位.计算结果显示,NO分子在Au(111)面几乎不吸附,而在Au/Au(111)的吸附能高达0.89eV.对表面金原子d态电子分波态密度分析表明,金表面对NO分子的吸附活性随着金原子配位数的减少而增强,这是由于低配位数的金原子的d态电子更靠近费米能级.当金表面增加或减少一个电子时,金表面对NO的吸附能有明显变化.正电荷的金表面对NO吸附的活性比中性的表面活性高,而带...  相似文献   

13.
采用密度泛函理论(DFT)和周期平板模型,研究两种WC(0001)表面的几何结构和表面能,并对Pt原子单层(PtML)在两种WC(0001)表面的高对称性吸附位上的吸附能和分离功进行计算.结果发现,终止于W原子的WC(0001)为最稳定的WC(0001)表面,Pt原子单层以hcp位的方式吸附于W终止的WC(0001)表面是PtML/WC(0001)体系最稳定的几何构型.在此基础上研究了CO分子和H原子分别在PtML/WC(0001)表面和具有相似表面结构的Pt(111)表面的吸附行为.在0.25 ML(monolayer)低覆盖度下,与在Pt(111)表面相比,在PtML/WC(0001)表面上的Pt—C间距明显拉长和CO分子吸附能减少,说明PtML/WC(0001)表面抗CO中毒能力比Pt(111)表面高;态密度分析进一步解释了CO分子与不同表面Pt原子的成键机理.在同一覆盖度下,H原子在PtML/WC(0001)表面的最大吸附能等于甚至略高于在Pt(111)表面的,表明Pt/WC对氢气氧化反应具有良好的催化活性,是一种很有前途的质子交换膜燃料电池(PEMFC)阳极催化剂.  相似文献   

14.
使用密度泛函理论对Fe3O4(111),(110)和(001)的表面结构及稳定性进行了研究。Fe3O4(111)表面有六种不同的终结形式,其中以四面体或八面体铁层终结的结构最稳定。对于(110)和(001)表面而言,分别有两种终结,且能量相近。计算结果与实验结果非常吻合并且合理解释了实验结果的争议性和复杂性。表面自由能的计算表明,(111)表面在热力学上不如(110)和(001)表面稳定,它的形成应该是动力学控制过程。  相似文献   

15.
采用基于第一性原理的密度泛函理论结合周期平板模型方法, 研究了甲醇分子在FeS2(100)完整表面的吸附与解离. 通过比较不同吸附位置的吸附能和构型参数发现: 表面Fe位为有利吸附位, 甲醇分子通过氧原子吸附在表面Fe位, 吸附后甲醇分子中的C―O键和O―H键都有伸长, 振动频率发生红移; 甲醇分子易于解离成甲氧基CH3O和H, 表面Fe位仍然是二者有利吸附位. 通过计算得出甲醇在FeS2(100)表面解离吸附的可能机理: 甲醇分子首先发生O―H键的断裂, 生成甲氧基中间体, 继而甲氧基C―H键断裂, 得到最后产物HCHO和H2.  相似文献   

16.
利用密度泛函理论系统研究了不同覆盖度下HF在3F、2F、1F与Al 终端的α-AlF3(0001)表面的吸附行为, 分析了HF与不同终端表面相互作用的电子机制. 计算结果表明: HF在3F终端的α-AlF3(0001)表面物理吸附; 在2F及1F终端表面化学吸附, 形成Al-F键和FHF结构, 使HF分子活化, 可以参加下一步的氟化反应; 在Al 终端表面解离吸附形成Al-F与Al-H键. 3F、2F、1F及Al 终端表面配位不饱和数目分别为0、1、2与3配位.不同覆盖度研究表明, 在2F终端表面上, 吸附一个HF分子使表面Al 配位达到饱和, 后续吸附的HF为物理吸附; 而在1F与Al 终端表面仍可化学吸附. 因此, 推测α-AlF3暴露不同终端表面中Al 原子配位不饱和数越高, 其对HF吸附与活化能力越强, 可能的氟化催化反应活性越高. 差分电荷密度与电子态密度分析表明, HF与3F终端α-AlF3(0001)表面发生弱相互作用, 而与2F、1F与Al 终端表面形成较强的电子相互作用.  相似文献   

17.
运用广义梯度密度泛函理论(GGA)的RPBE方法结合周期平板模型,在DNP基组下,研究了NO以N端和O端两种吸附取向在CuCl(111)表面上的吸附.通过对不同吸附位和不同覆盖度下的吸附能和几何构型参数的计算和比较发现:NO吸附在CuCl(111)表面Cu原子上的top位时为稳定的吸附;覆盖度为0.25 mL时吸附比较稳定;NO的N端吸附比O端吸附更有利,N端吸附时为化学吸附,O端吸附时为物理吸附.布居分析结果表明整个吸附体系发生了从Cu原子向NO分子的电荷转移,且O端吸附时电荷转移更多.N端吸附和O端吸附时,N-O键的伸缩振动频率均红移,同时O端吸附时红移更多.  相似文献   

18.
采用密度泛函理论方法,运用平板模型对噻吩分子在Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明,hcpA位的吸附最稳定,以bridgeB吸附最不稳定;噻吩吸附在表面上时,S原子向上翘起,4个C原子与边面Ni原子的作用更紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键的活泼性;噻吩以bridgeA吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而hcpA位吸附后噻吩分子轨道上电子的能量变稳定,分子并不活泼.  相似文献   

19.
本文采用密度泛函方法结合周期性平板模型,研究了氧原子和氧分子在完整和存在缺陷的Cu2O(111)表面的吸附。计算结果表明氧原子倾向于吸附在配位饱和的CuCSA位,而对于氧分子,则强烈倾向于吸附在配位不饱和的CuCUS位。氧分子在含有氧空位的缺陷表面的优势吸附位为平行吸附于空位上方的桥位。过渡态的计算表明氧分子在缺陷表面的解离是一个活化能很小的放热过程。  相似文献   

20.
研究了乙烷在Ni(111)表面解离的可能反应机理, 使用完全线性同步和二次同步变换(complete LST/QST)方法确定解离反应的过渡态. 采用基于第一性原理的密度泛函理论与周期平板模型相结合的方法, 优化了C2H6裂解反应过程中各物种在Ni(111)表面的top, fcc, hcp和bridge位的吸附模型, 计算了能量, 并对布居电荷进行分析, 得到了各物种的有利吸附位. 结果表明, 乙烷在Ni(111)表面C—C解离的速控步骤活化能为257.9 kJ·mol-1, 而C—H解离速控步骤活化能为159.8 kJ·mol-1, 故C—H键解离过程占优势, 主要产物是C2H4和H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号