首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
利用Langmuir-Blodgett(LB)技术制备了不同表面压力下的1,2-二油酸-甘油-3-磷脂酰胆碱(DOPC)/1,2-二棕榈酸甘油-3-磷脂酰胆碱(DPPC)(摩尔比为1:1)和DOPC/DPPC/Chol(摩尔比为2:2:1)单层膜, 对单层膜内分子间的相互作用进行了热力学分析, 并用荧光显微镜和原子力显微镜对其形态进行了观测.热力学分析表明, DOPC与DPPC分子在单层膜结构中相互作用为排斥力, 诱导单层膜出现相变; DOPC, DPPC与胆固醇(Chol)间的相互作用均为吸引力, 当表面压力(π)大于18 mN/m时, DPPC与胆固醇的作用力大于DOPC.荧光显微镜观测表明, DOPC/DPPC单层膜出现明显相分离现象, 富含DPPC微区成“花形”结构, 且随着表面压力的升高微区逐渐增大, “花瓣”增多; 当胆固醇加入到DOPC/DPPC体系时, 单层膜相态由液相与凝胶相共存转变为液态无序相与液态有序相共存结构, 富含DPPC的微区形状从“花形”转变成“圆形”.原子力显微镜对单层膜的表征验证了荧光显微镜的观测结果, 表明胆固醇加入到DOPC/DPPC体系中对单层膜排列具有明显的影响, 压力和溶液状态等是影响脂膜结构的重要因素.  相似文献   

2.
用核磁共振(NMR)方法研究了稀土离子及其配合物与二棕榈酰磷脂酰胆碱(DPPC)和鞘磷脂(SPM)脂质体的相互作用.磷脂极性头平行于膜平面.稀土离子与磷脂极性头P—O键键合,与经典模型不同,键合后极性基团仍平行于膜平面,而不是垂直于膜平面.稳定的稀土配合物对磷脂脂双层结构影响很小.将稀土离子引入磷脂脂质体和小分子配体的混合物中,稀土首先与小分子配体配位.  相似文献   

3.
膜材性质及制备方法调控下的脂质体负载干扰素的研究   总被引:3,自引:0,他引:3  
依据干扰素(IFN)分子、磷脂分子本身的理化性质和结构特点, 分别用三种制备方法, 以四种脂质体为膜材, 制备IFN脂质体, 考察了不同膜材、不同制备方法对脂质体粒径及包封率的影响. 结果表明, 以二肉豆蔻酰胆碱和二棕榈酰磷脂酰胆碱复合材料为主要膜材, 采用薄膜蒸发法制备的IFN脂质体有良好的稳定性, 60 d内其粒径可以保持在200~350 nm, 包封率可保持30%~40%.  相似文献   

4.
郝长春  孙润广 《化学学报》2007,65(20):2325-2330
用原子力显微镜研究了胆固醇(Chol)对鞘磷脂(SM)/1,2-二油酸甘油-3-磷脂酰胆碱(DOPC)二元脂系统结构的影响和神经酰胺对SM/DOPC/Chol三元脂系统结构的影响. 实验发现, 在SM/DOPC二元脂系统中, 胆固醇和带饱和脂肪酸链的磷脂发生相互作用形成微区结构, 随着胆固醇含量的增加, 微区的面积逐渐增大, 形成了稳定的片层结构. 当把神经酰胺加入到等摩尔配比的SM/DOPC/Chol三元脂系统中时, 随着神经酰胺比例的增加, 先形成紧密的聚集态结构, 然后逐渐演变成具有特定微区的网状结构. 研究结果表明, 微区的形成主要是由分子不同的官能团之间的相互作用所决定, 这可能在细胞信号传导等生理活动中起到重要的作用.  相似文献   

5.
研究了一种微生物脂肽--表面活性素与二肉豆蔻酰磷脂酰胆碱(DMPC)在气,液界面形成的混合单分子膜性质.测定了混合单分子膜的表面压.分子面积(л-A)曲线,根据л-A曲线获得了不同表面压下混合单分子膜的过剩面积(Aex)和混合过剩自由能(△Gmex)与混合单分子膜中表面活性素摩尔分数的关系.Aex和△Gmex的计算结果均表明,表面活性素与DMPC在纯水亚相上形成的混合单分子膜中不相容,二者之间 的相互作用主要是排斥力.通过原子力显微镜观察了在表面压15mN/m下的混合单分子膜的LB膜,发现表面活性素与DMPC发生了微相分离,说明二者在混合膜中的烷基链取向不同,这可能是二者发生排斥作用的主要原因之一.此外,还研究了亚相pH对混合单分子膜相容性的影响,发现表面活性素与DMPC在混合单分子膜中的相容性在碱性环境下增强,这可能与二者极性头基之间的相互作用有关.  相似文献   

6.
采用电化学方法研究了一种多肽类抗生素多粘菌素B(PMB)与模拟生物膜硫醇-磷脂酰胆碱杂化双层膜之间的相互作用。PMB可与磷脂酰胆碱发生强相互作用,破坏双层膜结构,从而使膜的通透性升高。PMB的浓度、酸度、与膜的作用时间及膜中胆固醇的存在均影响二者的作用程度。另外,膜的自修复实验表明,被PMB破坏的双层膜电极在一定程度上可以在KCl溶液中重新自组装,且自修复的程度和修复时间及与之相互作用的PMB的浓度有关。  相似文献   

7.
本文通过Langmuir单层膜的表面压力-平均分子面积(π-A)曲线的测定与分析,分别对髓鞘碱性蛋白(MBP)与细胞膜中不同头部基团脂质分子二棕榈酰基磷脂胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)在空气/液体界面上的相互作用过程进行了系统研究.实验结果表明:(1)当界面上脂质含量一定时,亚相中随着MBP浓度的增大,DPPC、DPPE单层膜的等温线向平均分子面积较大的方向移动;(2)在单层膜表面压力为10 mN/m时,一个MBP分子分别结合140±3个DPPC分子和100±3个DPPE分子,随着表面压力增大,当MBP分子分别与两种磷脂分子相互作用时,MBP插入到磷脂单层界面的个数逐渐减少;(3)随着蛋白质浓度的增加,脂分子形成的单层膜变得较为疏松,且MBP分子易于插入到分子头部较小的DPPE单层膜中;(4)蛋白质的存在使DPPC单层膜的表面压力逐渐减小,且蛋白质浓度越大表面压力降低越多,DPPC被MBP带入到亚相中越多;(5)对于DPPE单层膜,蛋白质通过与DPPE相互作用插入到界面膜中,引起表面压力增大,且蛋白质浓度越高,压力变化量越大.  相似文献   

8.
用核磁共振(NMR)方法研究了中药山莨菪碱(anisodamine)与结构不同的3种磷脂脂质体相互作用,二棕榈酰磷脂酰胆碱(DPPC)极性基团空阻较大,山莨菪碱三级胺端不能与P-O键作用,仍处于水相,苯环只能嵌入到甘油骨架C-2附近。二棕榈酰磷脂酸(DPPA)极性头空间位阻较小,山莨菪碱苯环可以直接插入到靠近脂酰链γ-次甲基的位置,而三级胺端与极性头发生静电作用,并且药物可以提高DPPA脂质体的流动性。山莨菪碱通过三级胺端与鞘磷脂(SPM)极性头静电作用较强,而苯环位于SPM脂双层亲水和疏水区界面。药物对3种磷脂双层结构影响很小。  相似文献   

9.
用NMR法研究了顺二氨二水合铂(Ⅱ)(AAP)与α-二棕搁酸磷脂酰胆碱(DPPC)的相互作用方式,以阐明在顺铂-细胞相互作用中膜磷脂的贡献。1H及13C谱表明,DPPC与AAP在CDCl3中作用时,铂结合在DPPC的头部并引起DPPC分子中gauche向trans的构象转变。65℃测定DPPC脂质体与AAP在D2O溶液中反应不同时间后的-N(CH3)3、-(CH2)n及-CH3基团1H的T1值表明,铂在磷脂上的结合引起的磷脂构象变化会导致膜分子重新装配。  相似文献   

10.
采用头基修饰的磷脂在金电极表面构建了稳定的磷脂双层膜,并使用该膜模拟生物膜对多肽类抗生素多粘菌素B(PMB)和磷脂酰丝氨酸的相互作用进行了研究.PMB可与磷脂酰丝氨酸发生相互作用,破坏双层膜结构,从而使膜的通透性升高.PMB的浓度、作用时间以及膜中胆固醇的存在均影响二者的作用程度.被PMB破坏的双层膜电极在一定程度上可在KC1溶液中重新自组装,且自修复的程度与修复时间和PMB的浓度有关.此外,比较了PMB和多种磷脂之间的作用程度,磷脂的头基、烃链的长度以及不饱和度均会影响二者间的相互作用.  相似文献   

11.
Electrochemical methods employing the hanging mercury drop electrode were used to study the interaction between variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQH ARASHLGLAR) and dioleoyl phosphatidylcholine (DOPC) monolayers. Capacitance potential and impedance measurements showed that the CNY21 analogues investigated interact with DOPC monolayers coating the mercury drop. Increasing the peptide hydrophobicity by substituting the two histidine residues with leucine resulted in a deeper peptide penetration into the hydrophobic region of the DOPC monolayer, indicated by an increase in the dielectric constant of the lipid monolayer (Deltaepsilon = 2.0 after 15 min interaction). Increasing the peptide net charge from +3 to +5 by replacing the histidines by lysines, on the other hand, arrests the peptide in the lipid head group region. Reduction of electroactive ions (Tl+, Pb2+, Cd2+, and Eu3+) at the monolayer-coated electrode was employed to further characterize the types of defects induced by the peptides. All peptides studied permeabilize the monolayer to Tl+ to an appreciable extent, but this effect is more pronounced for the more hydrophobic peptide (CNY21L), which also allows penetration of larger ions and ions of higher valency. The results for the various ions indicate that charge repulsion rather than ion size is the determining factor for cation penetration through peptide-induced defects in the DOPC monolayer. The effects obtained for monolayers were compared to results obtained with bilayers from liposome leakage and circular dichroism studies for unilamellar DOPC vesicles, and in situ ellipsometry for supported DOPC bilayers. Trends in peptide-induced liposome leakage were similar to peptide effects on electrochemical impedance and permeability of electroactive ions for the monolayer system, demonstrating that formation of transmembrane pores alone does not constitute the mechanism of action for the peptides investigated. Instead, our results point to the importance of local packing defects in the lipid membrane in close proximity to the adsorbed peptide molecules.  相似文献   

12.
Molecular interactions between phospholipids and mangostin in a lipid bilayer have been investigated in terms of the maximum additive concentration (MAC) of mangostin in liposomes, the surface potential, particle size, microscopic-viscosity and microscopic-polarity of liposomes, and the permeability of glucose. The mangostin used is a natural product extract: 1,3,6-trihydroxy-7-methoxy-2,8-bis(3-methyl-2-butenyl)-9-xanthenenone.

The MAC of mangostin was fairly dependent upon the nature of the liposomes (uncharged, negatively charged or positively charged). Solubilization of mangostin in the liposomal bilayer resulted in both an increase in the negative charge on the liposomal surface, strenghthening the state of the bilayer membrane, and a depression in the release of the glucose involved. Mangostin was found to temporarily stabilize the liposomal bilayer, although the bilayer membrane is still unstable in the long run.  相似文献   


13.
The effect of the incorporation of the major light-harvesting complex of photosystem II (LHCII) to planar bilayer lipid membranes (BLMs) formed from soybean asolectin and unilamellar small liposomes formed from egg-yolk phosphatidylcholine on ion transport across the lipid bilayer has been studied. The specific conductivity of the BLM rises from 5.2 +/- 0.8 x 10(-9) up to 510 x 10(-9) O(-1) cm(-2) upon the incorporation of LHCII. The conductivity of the membrane with LHCII depends upon the ionic strength of the bathing solution and is higher by a factor of five when the KCl concentration increases from 0.02 to 0.22 M. Such a strong effect has not been observed in the same system without LHCII. The liposome model is also applied to analyse the effect of LHCII on the bilayer permeability to protons. Unilamellar liposomes with a diameter less than 50 nm have been prepared, containing (trapped inside) Neutral Red, a pigment sensitive to proton concentration. A gradient of protons on the membrane is generated by the acidification of the liposome suspension and spectral changes of Neutral Red are recorded in time, reflecting the penetration of protons into the internal space of liposomes. Two components of proton permeation across liposome membranes are observed: a fast one (proceeding within seconds) and a slow one (operating on the time scale of minutes). The rate of both components of proton transport across LHCII-containing membranes is higher than for liposomes alone. The enhancement effect of LHCII on the ion transport across the lipid membrane is discussed in terms of aggregation of the pigment-protein complexes. The possible physiological importance of such an effect in controlling ion permeability across the thylakoid membrane is discussed.  相似文献   

14.
The effect of the lipid polar headgroup on melittin-phospholipid interaction was investigated by cryo-TEM, fluorescence spectroscopy, ellipsometry, circular dichroism, electrophoresis and photon correlation spectroscopy. In particular, focus was placed on the effect of the lipid polar headgroup on peptide adsorption to, and penetration into, the lipid bilayer, as well as on resulting colloidal stability effects for large unilamellar liposomes. The effect of phospholipid headgroup properties on melittin-bilayer interaction was addressed by comparing liposomes containing phosphatidylcholine, -acid, and -inositol at varying ionic strength. Increasing the bilayer negative charge leads to an increased liposome tolerance toward melittin which is due to an electrostatic arrest of melittin at the membrane interface. Balancing the electrostatic attraction between the melittin positive charges and the phospholipid negative charges through a hydration repulsion, caused by inositol, reduced this surface arrest and increased liposome susceptibility to the disruptive actions of melittin. Furthermore, melittin was demonstrated to induce liposome structural destabilization on a colloidal scale which coincided with leakage induction for both anionic and zwitterionic systems. The latter findings thus clearly show that coalescence, aggregation, and fragmentation contribute to melittin-induced liposome leakage, and that detailed molecular analyses of melittin pore formation are incomplete without considering also these colloidal aspects.  相似文献   

15.
Detergents are very useful for the purification of membrane proteins. A good detergent for protein extraction has to prevent denaturation by unfolding, and to avoid aggregation. Therefore, gaining access to the mechanism of biomembranes’ solubilization by detergents is crucial in biochemical research. Among the wide range of detergents used to purify membrane proteins, n-octyl β-d-glucopyranoside (OG) is one of the most important as it can be easily removed from final protein extracts.

Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of OG. Two kinds of supported model membranes were prepared by fusion of unilamellar vesicles: with an equimolar mixing of dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) or with DPPC alone. Time-lapse AFM experiments evidenced that below its critical micelle concentration (CMC), OG was not able to solubilize the bilayer but the gel DPPC domains were instantly dissolved into the DOPC matrix. This result was interpreted as a disorganization of the DPPC molecular packing induced by OG. When membranes were incubated with OG at concentrations higher than CMC, the detergent immediately provoked the complete and immediate desorption of the whole bilayer for both compositions: DPPC and DOPC/DPPC. After a while, some patches appeared onto the bare mica surface. This redeposition activity, together with fusion events, progressively led to the recovery of a continuous bilayer. These results provide a new insight on the unique properties of OG employed in membrane reconstitution protocols.  相似文献   


16.
We have carried out atomistic molecular dynamics simulations of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer and an alkane melt. Simulations reveal that the preferred position of a single C60 fullerene is about 6-7 A off of the center plane, allowing the fullerene to take advantage of strong dispersion interactions with denser regions of the bilayer. Further displacement (>8 A) of the fullerene away from the center plane results in a rapid increase in free energy likely due to distortion of the lipid head group layer. The effective interaction between fullerenes (direct interaction plus environment (bilayer)-induced interaction), measured as the potential of mean force (POMF) between two fullerenes as a function of their separation, was found to be significantly less attractive in the lipid bilayer than in an alkane melt of the same molecular weight as the lipid tails. Only part of this difference can be accounted for by the more favorable interaction of the fullerene with the relatively denser bilayer. Additionally, our POMF studies indicate that the bilayer is less able to accommodate the larger aggregated fullerene pair than isolated single fullerenes, again likely due to distortion of the bilayer structure. The implications of these effects on aggregation of fullerenes within lipid bilayer are considered.  相似文献   

17.
The study of the interaction of a cationic polymer as PEI with phospholipids membranes is of special relevance for gene therapy because the PEI is a potential nonviral vector to transfer DNA in living cells. We used light scattering, zeta potential, and electron transmission microscopy to characterize the interaction between DMPG and DOPC liposomes with PEI as a function of the charge molar ratio, pH, temperature, initial size of the liposomes, and headgroup of the lipids. Unexpectedly, a double charge inversion and two different ranges of PEI-liposome concentrations where an aggregation occurs were found, when the proper pH and initial size of the liposomes were chosen. The interaction is analyzed in terms of the interaction potential proposed by Velegol and Thwar for colloidal particles with a nonuniform surface charge distribution. Results show a remarkable dependence of the stability on pH and the initial size of the liposomes, which explains the low reproducibility of the experiments if no special care is taken in preparing the samples. Comparatively small changes in the pH or in the liposomes size lead to a completely different stability behavior.  相似文献   

18.
Tilted peptides are known to insert in lipid bilayers with an oblique orientation, thereby destabilizing membranes and facilitating membrane fusion processes. Here, we report the first direct visualization of the interaction of tilted peptides with lipid membranes using in situ atomic force microscopy (AFM) imaging. Phase-separated supported dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers were prepared by fusion of small unilamellar vesicles and imaged in buffer solution, in the absence and in the presence of the simian immunodeficiency virus (SIV) peptide. The SIV peptide was shown to induce the rapid appearance of nanometer scale bilayer holes within the DPPC gel domains, while keeping the domain shape unaltered. We attribute this behavior to a local weakening and destabilization of the DPPC domains due to the oblique insertion of the peptide molecules. These results were directly correlated with the fusogenic activity of the peptide as determined using fluorescently labeled DOPC/DPPC liposomes. By contrast, the nontilted ApoE peptide did not promote liposome fusion and did not induce bilayer holes but caused slight erosion of the DPPC domains. In conclusion, this work provides the first direct evidence for the production of stable, well-defined nanoholes in lipid bilayer domains by the SIV peptide, a behavior that we have shown to be specifically related to the tilted character of the peptide. A molecular mechanism underlying spontaneous insertion of the SIV peptide within lipid bilayers and the subsequent removal of bilayer patches is proposed, and its relevance to membrane fusion processes is discussed.  相似文献   

19.
Lateral segregation of lipids and proteins in biological membranes leads to the formation of detergent-resistant domains, also called "rafts". Understanding the mechanisms governing the biomembrane's resistance to solubilization by detergents is crucial in biochemical research. Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of different Triton X-100 (TX-100) concentrations. Mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) supported bilayers were prepared by vesicle fusion. Real-time AFM imaging revealed that, at concentrations below the critical micelle concentration (CMC), TX-100 did not solubilize the bilayer, but the DPPC domains were eroded in a time-dependent manner. This effect was attributed to the DPPC molecular packing disorganization by the detergent starting from the DOPC/DPPC interface. Just above the CMC, the detergent led to a complete solubilization of the DOPC matrix, leaving the DPPC domains unaltered. At higher TX-100 concentrations, the DOPC was also immediately removed just after detergent addition, and the DPPC domains remaining on the mica surface appeared to be more swollen and were gradually solubilized. This progressive solubilization of the DPPC remaining phase did not start at the edge of the domains but from holes appearing and expanding at the center of DPPC patches. The swelling of the DPPC domains was directly correlated with TX-100 concentration above the CMC and with detergent intercalation between DPPC molecules. We are convinced that this approach will provide a key system to elucidate the physical mechanisms of membrane solubilization by nonionic detergents.  相似文献   

20.
The efficiencies of polyelectrolytes, i.e., polycations and polyanions, and several kinds of water-soluble polymers as fusogens on soybean phospholipid liposome (SL) and egg yolk phospholipid liposome (EL) were investigated by the fluorescence quenching method. There were optimal concentrations for the induction of fusion in every system. Polycations induced fusion of liposomes at very low concentration in comparison with other polymers. Poly(carboxylic acid)s induced fusion at relatively high concentration. A strong acidic polyanion with high molecular weight also induced fusion of liposomes. The induction efficiency of poly(ethylene glycol) on fusion was higher than other nonionic polymers. The efficiency of fusion of EL was lower than that of SL in all systems because of the higher stability of EL membrane. It was found that electrostatic interactions, hydrogen bonding and/or hydrophobic interaction between these water-soluble polymers and liposomal membranes played an important role on aggregation and fusion of liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号