首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four new nickel(II) phthalate compounds: mononuclear complexes [Ni(Im)]6(Pht)·H2O (1), [Ni(Pht)(Im)3(H2O)2]·H2O (2) and [Ni(Pht)(2-MeIm)3(H2O)3]·H2O (3), and coordination polymer [Ni(Pht)(4-MeIm)2(H2O)]n (4) (where Pht = dianion of o-phthalic acid, Im = imidazole, 2-MeIm = 2-methylimidazole, 4-MeIm = 4-methylimidazole) have been synthesized. The complexes 14 were characterised by elemental analysis, IR data, thermogravimetric, and X-ray diffraction analyses. X-ray analysis shows that the asymmetric unit of 1 consists of [Ni(Im)]62+ cation, Pht2− anion and solvate H2O molecule. The phthalate dianion does not take part in coordination to metal ion. The cations, anions and water molecules are linked via   N–H??O and O–H??O interactions forming 2D hydrogen-bonded networks. The structures of 2 and 3 are similar to other mononuclear Ni(II) phthalate complexes where Pht2− anions act as monodentate ligands and uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonded double-chains. The structure of 4 consists of [Ni(4-MeIm)2(H2O)] building units connected by phthalate ions to form helical chains. The complexes 14 were tested for their ability to increase the biosynthesis of enzymes.  相似文献   

2.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

3.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

4.
5.
Cis-diaquobis{di-(2-pyridyl)-N-ethylimine}nickel(II) chloride (2) was obtained from the reaction of di-(2-pyridyl)-N-ethylimine (1) and [NiCl2dppe] [dppe = cis-1,2-bis(diphenylphosphino)ethylene] in a 2:1 ratio in hot acetonitrile. Cis-dichloro{di-(2-pyridyl)-N-ethylimine}palladium(II) (3) and cis-dichloro{di-(2-pyridyl)-N-ethylimine}platinum(II) (4) complexes were obtained from the reaction of MCl2 (M = Pd, Pt) and (1) in equimolar ratio in hot acetonitrile. Compounds 1–4 were characterized by IR spectroscopy, elemental analysis, and mass spectrometry; the complexes 3 and 4 were characterized in solution by NMR. In addition, solid state structures of compounds 14 were determined using single crystal X-ray diffraction analyses. X-ray diffraction data of the complexes 3 and 4 showed a distorted square planar local geometry at palladium and platinum atoms with the chlorine atoms in a cis-coordination; in 2 a local octahedral geometry at nickel atom was observed. Complexes 3 and 4 are arranged as dimers with a M?M distance of 3.4567(4) Å (M = Pd) and 3.4221(4) Å (M = Pt), respectively; 2 consists of units linked by intermolecular hydrogen bonding.  相似文献   

6.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

7.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

8.
Three new copper complexes and one cobalt complex with 5-(pyrazinyl)tetrazolate anion, (pyztz), as chelating bidentate ligand, were obtained by the reaction of pyrazinecarbonitrile with sodium azide in the presence of copper(II) nitrate or cobalt(II)chloride. Complexes of composition [Cu(pyztz)2(H2O)] (1) deep blue crystals, [Cu(pyztz)2(H2O)2] (2a) green crystals, [Co(pyztz)2(H2O)2] (2b) orange crystals, [Cu(pyztz)2(H2O)2] · (H2O) (3) blue crystals were obtained. The single crystal X-ray diffraction revealed that complex 1 has square pyramidal structure with one water molecule at apical and two pyrazine-tetrazolato ligands at basal sites, while structures of 2a, 2b and 3 consist of octahedrally coordinated metal ions, where two pyztz anions act as bidentate ligands via one of the pyrazine-N atoms and one of the tetrazole-N atoms in trans-positions and two trans water molecules. Complex 3 contains one extra lattice water molecule. Hydrogen bonds of the types O–H?O and O–H?N connect the mononuclear units to a three-dimensional network structure in 2 (a and b are isostructural) and 3. Although the H-bond patterns look complex it is shown that they can be related to the well-known three- and six-connected rutile net (rtl) in 2 and the four- and six-connected fsh-net in 3.  相似文献   

9.
A bioinorganic approach into the problem of the isomorphous substitution of calcium(II) by lanthanide(III) ions in biological systems is discussed. Reactions of malonamic acid (H2malm) with CaII and NdIII sources under similar conditions yielded the compounds [Ca(Hmalm)2]n (1), [Nd(Hmalm)2(H2O)2]n(NO3)n (2) and [Nd(Hmalm)2(H2O)2]nCln·2nH2O (3·2nH2O). Their X-ray crystal structure data show that the malonamate(-1) ligand presents two different ligation modes and coordinates through the two carboxylate and the amide-O atoms, thus bridging three CaII ions in 1 and two NdIII ions in 2 and 3·2nH2O. Complex 1 is a 3D coordination polymer based on neutral repeating units, whereas 2 and 3·2nH2O are 1D coordination polymers based on the same cationic repeating unit. Hydrogen bonding interactions further stabilize the 3D framework structure of 1 and assemble the 1D chains of 2 and 3·2nH2O into 3D networks. The three complexes were characterized spectroscopically (IR, far-IR, and Raman) and the thermal decomposition of 2 and 3·2nH2O was monitored by TG/DTA and TG/DTG measurements. Variable-temperature magnetic susceptibility data for 2 are also reported. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

10.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

11.
Three new mononuclear complexes of nitrogen–sulfur donor sets, formulated as [FeII(L)Cl2] (1), [CoII(L)Cl2] (2) and [NiII(L)Cl2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes 1 and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit FeII/FeIII, CoII/CoIII and NiII/NiIII quasi-reversible redox couples in cyclic voltammograms with E1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively.  相似文献   

12.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

13.
A new flexible disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane (L), which is a mixture of the meso and rac isomers, was treated with CuII or CdII nitrate and obtained dimeric complex [Cu2(L)3(H2O)2(NO3)4] 2 or [Cd2(L)3(H2O)2(NO3)4] 3. In the reacting system the crystals of meso isomer 1 of L together with 2 or 3 were obtained. 2 and 3 have similar molecular structures. In the neutral dimer, three ligands present two kinds of coordination models: monodentate and bis-monodentate. The neutral dimeric units in 2 and 3 are linked by hydrogen bonds to yield a chain structure. Crystal structures of all three compounds were determined by single-crystal X-ray diffraction methods. Crystal data for 1: monoclinic, space group Cc, a=41.95(2), b=5.132(2), c=8.660(4) Å, β=94.898(9)°, V=1857.7(15) Å3, Z=4, final refinement (I>2σ(I)): R1=0.0659, wR2=0.1415. Crystal data for 2: triclinic, space group P-1, a=9.242(4), b=9.539(4), c=21.042(9) Å, α=83.888(9), β=87.971(8), γ=74.177(9)°, V=1774.6(13) Å3, Z=2, final refinement (I>2σ(I)): R1=0.0577, wR2=0.0954. Crystal data for 3: triclinic, space group P-1, a=9.203(4), b=9.831(3), c=20.860(7) Å, α=84.313(6), β=86.432(7), γ=74.188(6)°, V=1805.9(11) Å3, Z=2, final refinement (I>2σ(I)): R1=0.0548, wR2=0.1192.  相似文献   

14.
The alkyl chain-linked diimidazolium (or dibenzimidazolium) salts, 1,1′-diethyl-4,4′-tetramethylene-diimidazolium-diiodide (L1H2·I2) and 1,1′-diethyl-3,3′-trimethylene-dibenzimidazolium-diiodide (L2H2·I2), and their silver(I) and copper(II) coordination polymers, [L1AgI]n (1) and [L2Cu2I4]n (2), have been prepared and characterized. Complex 1 is a 1D helical polymer generated by bidentated carbene ligands (L1) and Ag(I) atoms. The 1D polymer of 2 is formed by bidentated carbene ligands (L2) and coplanar quadrilateral Cu2I2 units. 3D supramolecular frameworks in the crystal packings of 1 and 2 are formed via intermolecular weak interactions, including C–H···π contacts, ππ interactions and C–H···I hydrogen bonds.  相似文献   

15.
The reaction of β-diketiminate substituted germanium(II) and tin(II) fluorides (LGeF (1) and LSnF (2)) (L = CH{(CMe)2(2,6-iPr2C6H3N)2}) with diiron nonacarbonyl, Fe2(CO)9 at room temperature, leads to the iron carbonyl complexes of germanium(II) LGeFFe(CO)4 (3) and tin(II) LSnFFe(CO)4 (4), respectively. Compounds 3 and 4 were characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Furthermore, both complexes (3 and 4) were investigated by X-ray structural analysis which shows that both compounds are monomeric in the solid state containing terminal fluorine atoms.  相似文献   

16.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

17.
Four iron(II) and cobalt(II) complexes ligated by 2,6-bis(4-nitro-2,6-R2-phenylimino)pyridines, LMCl2 (1: R = Me, M = Fe; 2: R = iPr, M = Fe; 3: R = Me, M = Co; 4: R = iPr, M = Co) have been synthesized and fully characterized, and their catalytic ethylene polymerization properties have been investigated. Among these complexes, the iron(II) pre-catalyst bearing the ortho-isopropyl groups (complex 2) exhibited higher activities and produced higher molecular weight polymers than the other complexes in the presence of methylaluminoxane (MAO). A comparison of 2 with the reference non-nitro-substituted catalyst (2,6-bis(2,6-diisopropylphenylimino)pyridyl)FeCl2 (FeCat 5) revealed a modest increase of the catalytic activity and longer lifetime upon substitution of the para-positions with nitro groups (activity up to 6.0 × 103 kg mol−1 h−1 bar−1 for 2 and 4.8 × 103 kg mol−1 h−1 bar−1 for 5), converting ethylene to highly linear polyethylenes with a unimodal molecular weight distribution around 456.4 kg mol−1. However, the iron(II) pre-catalyst 1 on changing from ortho-isopropyl to methyl groups displayed much lower activities (over an order of magnitude) than 2 under mild conditions. As expected, the cobalt analogues showed relatively low polymerization activities.  相似文献   

18.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

19.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

20.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号