共查询到20条相似文献,搜索用时 15 毫秒
1.
Mikhail Sofin 《Journal of solid state chemistry》2005,178(12):3708-3714
Na3Cu2O4 and Na8Cu5O10 were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN3 and NaNO3. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na3Cu2O4: P21/n, Z=4, a=5.7046(2), b=11.0591(4), c=8.0261(3) Å, β=108.389(1)°, 2516 independent reflections, R1(all)=0.0813, wR2 (all)=0.1223; Na8Cu5O10: Cm, Z=2, a=8.228(1), b=13.929(2), , β=111.718(2)°, 2949 independent reflections, R1(all)=0.0349, wR2 (all)=0.0850), the main feature of both crystal structures are CuO2 chains built up from planar, edge-sharing CuO4 squares. From the analysis of the Cu-O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na3Cu2O4 these ions alternate in the chains, in Na8Cu5O10 the periodically repeated part consists of five atoms according to CuII-CuII-CuIII-CuII-CuIII. The magnetic susceptibilities show the dominance of antiferromagnetic interactions. At high temperatures the compounds exhibit Curie-Weiss behaviour (Na3Cu2O4: , , Na8Cu5O10: , , magnetic moments per divalent copper ion). Antiferromagmetic ordering is observed to occur in these compounds below 13 K (Na3Cu2O4) and 24 K (Na8Cu5O10). 相似文献
2.
Rodion V. Panin Nellie R. Khasanova Evgeny V. Antipov Walter Schnelle 《Journal of solid state chemistry》2007,180(5):1566-1574
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pm3¯n, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K. 相似文献
3.
Rb6Mn2O6 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Mn3O4, RbN3 and RbNO3) were heated in a special regime up to 500 °C and annealed at this temperature for 75 h in silver crucibles. Single crystals have been grown by annealing a mixture with a slight excess of rubidium components at 450 °C for 500 h. According to the single crystal structure analysis, Rb6Mn2O6 is isotypic to K6Mn2O6, and crystallizes in the monoclinic space group P21/c with a = 6.924(1) Å, b = 11.765(2) Å, c = 7.066(1) Å, β = 99.21(3)°, 2296 independent reflections, R1 = 5.23 % (all data). Manganese is tetrahedrally coordinated and two tetrahedra are linked by sharing a common edge, forming a dimer [Mn2O6]6−. The magnetic behavior has been investigated. 相似文献
4.
RbMnO2 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursers (Mn2O3, RbN3 and RbNO3) were heated in a special regime up to 600 °C and annealed at this temperature for 30 h in specially designed silver crucibles. Single crystals have been grown by annealing a 1:1 mixture of Rb2O and MnOx at 585 °C for 1200 h. According to the crystal structure determination Mn3+ is in a square‐pyramidal coordination by oxygen. These [MnO5] units form double chains extending along the crystallographic c‐axis. RbMnO2 shows Curie‐Weiss behaviour down to ~ 100 K. A fit of the susceptibility data yields an average value of the magnetic moment (per manganese atom) of μeff = 5.33 μB, and θp = –820 K. At 50 K and low field strength onset of ferromagnetic order due to spin canting has been observed. 相似文献
5.
Na7Cu3O8 was prepared through oxidation of a Na3CuO2/NaCuO mixture (2:1) in dried oxygen at 450 °C. Single crystals have been grown by annealing of Na7Cu3O8, in the presence of Na2O2, at 450 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structure ( , Z = 1, a = 5.5891(2), b = 6.0945(2), c = 7.8890(3) Å, α = 110.059(2), β = 108.669(2), γ = 90.237(2)°) a new Cu3O87- oxocuprate anion, consisting of three edge sharing CuO4 squares, is the prominent structural feature. These anions are aligned parallel to the space diagonal of the unit cell and can be regarded as infinite chains from which every fourth copper atom has been removed. This new representative of an oxocuprate(III) anion gives support to the expectation that the gap between dimeric and infinite edge sharing units of square planar cuprate anions can be closed, in principle. 相似文献
6.
R.V Shpanchenko V.V Chernaya J Hadermann C Geibel 《Journal of solid state chemistry》2003,173(1):244-250
The new complex oxide Na2SrV3O9 was synthesized and investigated by means of X-ray diffraction, electron microscopy and magnetic susceptibility measurements. This oxide has a monoclinic unit cell with parameters a=5.416(1) Å, b=15.040(3) Å, c=10.051(2) Å, β=97.03(3)°, space group P21/c and Z=4. The crystal structure of Na2SrV3O9, as determined from X-ray single-crystal data, is built up from isolated chains formed by square V4+O5 pyramids. Neighboring pyramids are linked by two bridging V5+O4 tetrahedra sharing a corner with each pyramid. The Na and Sr atoms are situated between the chains. Electron diffraction and HREM investigations confirmed the crystal structure. The temperature dependence of the susceptibility indicates low-dimensional magnetic behavior with a sizeable strength of the magnetic intra-chain exchange J of the order of 80 K, which is very likely due to superexchange through the two VO4 tetrahedra linking the magnetic V4+ cations. 相似文献
7.
Structure and basic magnetic properties of the honeycomb lattice compounds Na2Co2TeO6 and Na3Co2SbO6
L. Viciu Q. Huang H.W. Zandbergen T. McQueen 《Journal of solid state chemistry》2007,180(3):1060-1067
The synthesis, structure, and basic magnetic properties of Na2Co2TeO6 and Na3Co2SbO6 are reported. The crystal structures were determined by neutron powder diffraction. Na2Co2TeO6 has a two-layer hexagonal structure (space group P6322) while Na3Co2SbO6 has a single-layer monoclinic structure (space group C2/m). The Co, Te, and Sb ions are in octahedral coordination, and the edge sharing octahedra form planes interleaved by sodium ions. Both compounds have full ordering of the Co2+ and Te6+/Sb5+ ions in the ab plane such that the Co2+ ions form a honeycomb array. The stacking of the honeycomb arrays differ in the two compounds. Both Na2Co2TeO6 and Na3Co2SbO6 display magnetic ordering at low temperatures, with what appears to be a spin-flop transition found in Na3Co2SbO6. 相似文献
8.
Bi3Fe0.5Nb1.5O9 was synthesized using conventional solid state techniques and its crystal structure was refined by the Rietveld method using neutron powder diffraction data. The oxide adopts an Aurivillius-type structure with non-centrosymmetric space group symmetry A21am (a=5.47016(9) Å, b=5.43492(9) Å, c=25.4232(4) Å), analogous to other Aurivillius compounds that exhibit ferroelectricity. The Fe and Nb cations are disordered on the same crystallographic site. The [(Fe,Nb)O6] octahedra exhibit tilting and distortion to accommodate the bonding requirements of the Bi cations located in the perovskite double layers. Magnetic measurements indicate non-Curie-Weiss-type paramagnetic behavior from 300 to 6 K. Measurements of dielectric properties and electrical resistivity exhibited changes near 250-260 °C and are suggestive of a ferroelectric transition. 相似文献
9.
Cr2V4O13, a tetravanadate of Cr3+ has been prepared by repeated heating of stoichiometric amounts of Cr2O3 and V2O5 and its crystal structure is refined by Rietveld refinement of the powder XRD data. This compound crystallizes in a monoclinic lattice with unit cell parameters: a=8.2651(3), b=9.2997(3), c=14.5215(5) Å, β=102.618(3)°, V=1089.21(6) Å3 and Z=4 (Space group: P21/c). The U shaped (V4O13)6− formed by corner connected VO4 tetrahedra links the Cr2O10 (dimers of two edge shared CrO6 octahedra) forming a three dimensional network structure of Cr2V4O13. This compound is stable up to 635 °C and peritectically decomposes to orthorhombic CrVO4 and V2O5 above this temperature. A possible long range antiferromagnetic ordering below 10 K is suggested from the squid magnetometry and electron paramagnetic resonance (epr) spectroscopic studies of Cr2V4O13. 相似文献
10.
CsCu3O2 was prepared via the azide route. Stoichiometric mixtures of the precursors (CsN3, Cu2O and CuO) were heated in a special regime up to 450 °C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of as prepared powders at 450 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X‐ray analysis of the crystal structure (P3¯m1, Z = 1, a = 5.250(1), c = 5.442(1)Å, γ = 120°) copper is linearly coordinated by oxygen atoms. The CuO2‐dumb‐bells are connected to an infinite two‐dimensional Cu3O2‐network. CsCu3O2 is isostructural with CsCu3S2, CsAu3S2, CsAu3Se2 and RbAu3Se2. 相似文献
11.
Artem M. Abakumov Joke Hadermann Alexander A. Tsirlin Haiyan Tan Jo Verbeeck Haitao Zhang Evgeny V. Dikarev Roman V. Shpanchenko Evgeny V. Antipov 《Journal of solid state chemistry》2009,182(8):2231-2238
The crystal structure of the Pb4Mn9O20 compound (previously known as “Pb0.43MnO2.18”) was solved from powder X-ray diffraction, electron diffraction, and high resolution electron microscopy data (S.G. Pnma, a=13.8888(2) Å, b=11.2665(2) Å, c=9.9867(1) Å, RI=0.016, RP=0.047). The structure is based on a 6H (cch)2 close packing of pure oxygen “h”-type (O16) layers alternating with mixed “c”-type (Pb4O12) layers. The Mn atoms occupy octahedral interstices formed by the oxygen atoms of the close-packed layers. The MnO6 octahedra share edges within the layers, whereas the octahedra in neighboring layers are linked through corner sharing. The relationship with the closely related Pb3Mn7O15 structure is discussed. Magnetization measurements reveal a peculiar magnetic behavior with a phase transition at 52 K, a small net magnetization below the transition temperature, and a tendency towards spin freezing. 相似文献
12.
D.-G. Chen D.-S. Wu H. Zhang Y.-C. Zhang Y.-J. Gong Z.-G. Kan 《Journal of solid state chemistry》2004,177(11):3927-3933
A novel compound Ba2ZnV2O8 has been synthesized in high temperature solution reaction and its crystal structure has been characterized by means of single crystal X-ray diffraction analysis. It crystallizes in monoclinic system and belongs to space group P21/c with a=7.9050(16), b=16.149(3), , β=90.49(3). It builds up from 1-D branchy chains of [ZnV2O84−]∞, and the Ba2+ cations are located in the space among these chains. The IR spectrum, ultraviolet-visible diffuse reflection integral spectrum and fluorescent spectra of this compound have been investigated. The calculated results of energy band structure by the density functional theory method show that the solid-state compound of Ba2ZnV2O8 is an insulator with direct band gap of 3.48 eV. The calculated total and partial density of states indicate that the top valence bands are contributions from the mixings of O-2p, V-3d, and Zn-3d states and low conduction bands mostly originate from unoccupied antibonding states between the V-3d and O-2p states. The V-O bonds are mostly covalence characters and Zn-O bonds are mostly ionic interactions, and the ionic interaction strength is stronger between the Ba-O than between the Zn-O. The refractive index of nx, ny, and nz is estimated to be 1.7453, 1.7469, and 1.7126, respectively, at wavelength of 1060 nm for Ba2ZnV2O8 crystal. 相似文献
13.
Nathalie Tancret 《Journal of solid state chemistry》2005,178(10):3066-3073
Well-developed single crystals of the title compound were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using Mo(Kα) radiation and a Charge Coupled Device (CCD) detector. The crystal structure was solved and refined in the hexagonal symmetry with space group, a=5.6698(2) Å and c=14.4654(5) Å to a final R1=0.022 for 44 parameters with 1418 individual reflections. The structure of Ba6Co6ClO16, which is related to the 6H-perovkite-type structure of BaMnO2.88, is formed by the periodic stacking along [001] of five [BaO3] layers separated by a [BaOCl] with a (hhhchc) stacking sequence. The [BaO3] stacking creates tetranuclear face sharing octahedra units Co4O15 containing Co(III) connected by dimers of corner-sharing CoO4 tetrahedra. This new oxychloride belongs to the family of compounds formulated as [BaOCl]M′2[Ban+1MnO3n+3] where n represents the thickness of the octahedral string in hexagonal perovskite slabs. 相似文献
14.
Roman V. Shpanchenko Alexander A. Tsirlin Evgeny V. Antipov Joke Hadermann Hiroya Sakurai 《Journal of solid state chemistry》2008,181(9):2433-2441
The new complex germanates RCrGeO5 (R=Nd-Er, Y) have been synthesized and investigated by means of X-ray powder diffraction, electron microscopy, magnetic susceptibility and specific heat measurements. All the compounds are isostructural and crystallize in the orthorhombic symmetry, space group Pbam, and Z=4. The crystal structure of RCrGeO5, as refined using X-ray powder diffraction data, includes infinite chains built by edge-sharing Cr+3O6 octahedra with two alternating Cr−Cr distances. The chains are combined into a three-dimensional framework by Ge2O8 groups consisting of two edge-linked square pyramids oriented in opposite directions. The resulting framework contains pentagonal channels where rare-earth elements are located. Thus, RCrGeO5 germanates present new examples of RMn2O5-type compounds and show ordering of Cr+3 and Ge+4 cations. Electron diffraction as well as high-resolution electron microscopy confirm the structure solution. Magnetic susceptibility data for R=Nd, Sm, and Eu are qualitatively consistent with the presence of isolated 3d (antiferromagnetically coupled Cr+3 cations) and 4f (R+3) spin subsystems in the RCrGeO5 compounds. NdCrGeO5 undergoes long-range magnetic ordering at 2.6 K, while SmCrGeO5 and EuCrGeO5 do not show any phase transitions down to 2 K. 相似文献
15.
The crystal structure of Sr4Mn2NiO9 has been refined on single crystal. This phase belongs to the series A1+x(A′xB1–x)O3 (x=1/3) related to the 2H-hexagonal perovskite. The structure contains transition metals in chains of oxide polyhedra (trigonal prisms and octahedra); neighboring chains are separated from each other by the Sr atoms. The sequence of the face sharing polyhedra along the chains is two octahedra + one trigonal prism. Mn occupies the octahedra and Ni is disordered in the trigonal prism with ≈80% in the pseudo square faces of the prism and ≈20% at the centre. This result has been confirmed by XANES experiments at Mn K and Ni K edges, respectively. Sr4Mn2NiO9 is antiferromagnetic with a Néel temperature at T=3 K. The Curie constant measured at high temperature is in good agreement with ≈80% of the Ni2+ ions in the spin state configuration S=0. 相似文献
16.
M. Fang H. Zhang D. Zhao W.-L. Zhang S.-L. Yang 《Journal of solid state chemistry》2008,181(9):2165-2170
A sodium gadolinium phosphate crystal, Na3GdP2O8, has been synthesized by a high-temperature solution reaction, and it exhibits a new structural family of the alkali-metal-rare-earth phosphate system. Although many compounds with formula M3LnP2O8 have been reported, but they were shown to be orthorhombic [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] rather than monoclinic as shown in this paper. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group C2/c and the cell parameters: a=27.55 (25), b=5.312 (4), c=13.935(11) Å, β=91.30(1)°, and V=2038.80 Å3, Z=4. Its structure features a three-dimensional GdP2O83− anionic framework with two different types of interesting tunnels at where Na atoms are located by different manners. The framework is constructed by Gd polyhedra and isolated PO4 tetrahedra. It is different from the structure of K3NdP2O8 [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] with space group P21/m that shows only one type of tunnel. The emission spectrum and the absorption spectrum of the compound have been investigated. Additionally, the calculations of band structure, density of states, dielectric constants, and refractive indexes have been also performed with the density functional theory method. The obtained results tend to support the experimental data. 相似文献
17.
Xiao-Qing Yuan Mei-Ling Feng Jian-Rong Li Xiao-Ying Huang 《Journal of solid state chemistry》2010,183(9):1955-1961
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds. 相似文献
18.
Shilie Pan Jared P. Smit Evan S. Stampler Jaewook Baek Kenneth R. Poeppelmeier 《Journal of solid state chemistry》2008,181(8):2087-2091
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4. 相似文献
19.
Na2MnO2 was prepared via the azide/nitrate route. Stoichiometric mixtures of the precursors (Mn2O3, NaN3 and NaNO3) were heated in an appropriate regime up to 390 °C and annealed at this temperature for 20 h, in specially designed silver containers. As the most prominent feature, the crystal structure of Na2MnO2 (C2/c, Z = 12, a = 12.5026(9), b = 12.1006(9), c = 6.0939(4) Å, β = 117.94(0)°, 1556 independent reflections, R1 = 3.83 % (all data)) forms a three dimensional framework polyanion of corner sharing MnO4‐tetrahedra. The connectivity pattern of the tetrahedral building units corresponds to the moganite structure, a rare SiO2 modification. According to measurements of the magnetic susceptibility in the temperature range from 2 to 750 K, Na2MnO2 shows antiferromagnetic ordering below 250 K. Evaluation of the high temperature data employing the Curie‐Weiss law revealed a magnetic moment of μeff = 5.93 μB, confirming the presence of divalent manganese. 相似文献
20.
Yasuhiko Takahashi 《Journal of solid state chemistry》2005,178(12):3667-3671
Single crystals of the LiCoO2-LiAlO2 solid solution compounds LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2 were synthesized by a flux method using alumina crucibles. A single-crystal X-ray diffraction study confirmed the trigonal space group and the lattice parameters a=2.8056(11) Å, c=14.1079(15) Å, and c/a=5.028 for LiAl0.32Co0.68O2, and a=2.8023(7) Å, c=14.184(4) Å, and c/a=5.061 for LiAl0.71Co0.29O2. The crystal structures have been refined to the conventional values R=3.2% and wR=2.4% for LiAl0.32Co0.68O2, and R=3.6% and wR=3.5% for LiAl0.71Co0.29O2. The evidence of the location of Al atoms in the pseudotetragonal coordination (6c site), reported previously in LiAl0.2Co0.8O2, could not be observed in the present electron density distribution maps in both LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2. The octahedral distortion analysis indicated that the Al-substitution strongly affected the distortion of the LiO6 octahedron in this solid-solution compound system, but hardly affected that of the (Al.Co)O6 octahedron. 相似文献