首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of transition metal(II) salts with three aminophosphonic acids, 1-[(H2O3PCH2)2NCH2CH2−]-piperazine-4-CH2PO3H2 (H6L1), 3-pyridyl-CH2N(CH2PO3H2)2 (H4L2) and 4-pyridyl-CH2N(CH2PO3H2)2 (H4L3) afforded three new metal phosphonates, namely, Cu(H4L1)·2H2O (1), Co(H3L2)2·H2O (2) and [Co(H2L3)(H2O)]·H2O (3). The structure of compound 1 features a 1D chain in which the CuN2O3 and CPO3 polyhedra are interconnected by bridging phosphonate ligands to form 1D chains. Compound 2 has a layered structure. The cobalt(II) ions in the octahedral coordination geometries and {CPO3} tetrahedra are interconnected into an inorganic chain via -N(CH2PO3H)2 moieties, and adjacent chains are further bridged by the coordination pyridyl groups of H3L2 into a 2D layer. The structure of compound 3 features a 2D double layered structure, in which the Co(II) ions are interconnected by bridging phosphonate groups into a 1D chain along b-axis. Neighboring chains are interconnected by coordination pyridyl groups into a double layer perpendicular to the c-axis.  相似文献   

2.
Hydrothermal reactions of divalent transition metal salts with imino-bis(methylphosphonic acid), NH(CH2PO3H2)2 (H4L) afforded three new metal phosphonates, namely, Cu[NH(CH2PO3H)2] 1, {Co[NH2(CH2PO3H)(CH2PO3)](H2O)2}·H2O 2 and Mn[NH2(CH2PO3H)(CH2PO3)](H2O) 3. When HO2C(CH2)3N(CH2PO3H2)2 was used as the phosphonate ligand and 4,4′-bipy as the second metal linker, {Cu4[NH(CH2PO3)2]2(4,4′-bipy)(H2O)4}·9H2O 4 with a pillared layered architecture was obtained. The NH(CH2PO3)2 anion resulted from the cleavage of the HO2C(CH2)3-group during the reaction. Although compounds 1-3 have a same M/L ratio (1:1), they exhibit totally different structures.Compound 1 has a linear chain structure, in which each pair of square-pyramidal coordinated copper(II) ions are bridged by two phosphonate oxygen atoms to form a Cu2O2 dimeric unit, and such dimeric units are further interconnected via phosphonate groups to form a [010] chain. Compound 2 has a layered architecture built from CoO6 octahedra bridged by phosphonate ligands. In compound 3, the interconnection of the manganese(II) ions by bridging imino-diphosphonate ligands leads to a 3D network. Compound 4 has a pillar-layered structure, the layers composed of Cu(II) ions bridged by aminodiphosphonate ligands are interconnected by 4,4′-bipy ligands to form channels along c-axis. Several factors that affect the structures of the metal phosphonates formed have also been discussed. Compounds 2 and 3 show predominant antiferromagnetic interactions between magnetic centers.  相似文献   

3.
Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO2CCH2N(CH2PO3H2)2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb2[O2CCH2N(CH2PO3)(CH2PO3H)]·H2O (1) and {NH3CH2CH2NH3}{Ni[O2CCH2N(CH2PO3H)2](H2O)2}2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a 〈002〉 double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O2CCH2N(CH2PO3H)2][H2O]2} anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a 〈800〉 hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=−4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.  相似文献   

4.
The single crystal structure of a series of nine isotypic Mo(V) diphosphates was determined from crystals with composition A2+(MoO)10(P2O7)8 (A=Ba, Sr, Ca, Cd, Pb) and A+(MoO)5(P2O7)4 (A=Ag, Li, Na, K). The structure of those phosphates, built up of corner sharing MoO6 octahedra, MoO5 tetragonal pyramids and P2O7 diphosphates groups, forms eight-sided tunnels as described by Lii et al. for A=Ag. New features are evidenced: (1) existence of two orientations, up and down along b for the MoO5 pyramids; (2) maximum insertion rate of the divalent cations which is twice less than that of the univalent cations; (3) different behavior of the series “Pb, Sr, Ba, Li, Na, K” which exhibits only one kind of site for the inserted cation, compared to the “Cd, Ca, Ag” series for which two kinds of sites are observed; (4) off-centering of the A-site cations with respect to the tunnel axis; and (5) unusually high thermal factors along the tunnel axis, but absence of ionic conductivity.  相似文献   

5.
Hydrothermal reactions of cadmium(II) chloride with three amino-diphosphonic acids, C6H5CH2N(CH2PO3H2)2 (H4L1), C6H5CH2CH2N(CH2PO3H2)2 (H4L2) and 4-CH3-C6H4CH2N (CH2PO3H2)2) (H4L3) resulted in three new metal amino-diphosphonates, namely, Cd(H3L1)2, 1 Cd(H3L2)2·2H2O 2 and Cd(H3L3)23. In all three complexes, the Cd(II) ion is octahedrally coordinated by six phosphonate oxygen atoms from six ligands. Complexes 1 and 3 have a similar structure in which the CdO6 octahedra are cross-linked by bridging ligands into a double chain along the c-axis, such double chains are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form 〈100〉 and 〈200〉 layers with the phenyl groups of the ligands orientated toward the interlayer space. The structure of complex 2 features a 〈100〉 cadmium(II) diphosphonate layer. The effects of the substitute groups attached to the amine groups on the structures of the metal phosphonates are also discussed.  相似文献   

6.

Chemical preparation, crystal structure, thermogravimetric and differential analysis, solid state 31P MAS NMR characterization, and IR spectroscopic investigations are given for a new organic cation dihydrogenmonophosphate, (2-CH3OC6H4CH2NH3)H2PO4. This compound is monoclinic C2/c, with unit cell parameters a = 27.740(8), b = 4.827(2), c = 16.435(3) Å, β = 93.79(2)°, V = 2196 (1) Å3, Z = 8, and ρ = 1.422 g · cm?3. The crystal structure has been determined and refined to R = 0.046 (Rw = 0.056), using 1,746 independent reflections with I > 3σ (I). Its atomic arrangement can be described by infinite polyanions [H2PO4] n n ?, organized in ribbons alternating with organic cations. Strong hydrogen bonds connect the different components. Electrical conductivity measurements show that the [2-CH3OC6H4CH2NH3]H2PO4 has a low ionic conductivity value at 403 K.  相似文献   

7.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

8.
For triple phosphates of composition A′0.5A0.5 Ti2(PO4)3 (A?A′=Li?Na, Na?K, K?Rb), phase formation is studied, the crystal structure is refined, and the electrical conductivity is measured. The compounds are classified with the NaZr2(PO4)3 structure type (NZP, space group R $\bar 3$ c). The phosphate frameworks are built of TiO6 octahedra and PO4 tetrahedra. Extraframework positions M1 are fully occupied by randomly distributed alkali cations. Positions M2 are vacant. Correlations are found between the structural distortion and electrical conductivity of the phosphates, on one hand, and the alkali cation size, on the other.  相似文献   

9.
10.
Tetra- and pentasodium salts of nitrilotris(methylenephosphonic acid) N(CH2PO3)3H6 (NTP) have been studied by single-crystal X-ray diffraction and spectroscopy. [Na8(H2O)12{NH(CH2PO3)3H}2] · H2O crystallizes in triclinic system, space group P1?, Z = 1, a = 7.1515(2) Å, b = 11.1590(3) Å, c = 12.0583(3) Å; α = 92.077(2)°, β = 106.145(2)°, γ = 5.628(2)°, CCDC No. 1432091. The crystal structure comprises two-dimensional layers lying along planes (011?), where dimeric molecules are linked by bridges each comprising four Na hydration octahedra. The [Na5(H2O)11{NH(CH2PO3)3}] · 2H2O crystals are monoclinic, space group P21/n, Z = 4, a = 6.3024(2) Å, b = 21.5639(7) Å, c = 18.1608(6) Å; β = 91.261(3)°, CCDC No. 1497161. The crystal packing comprises alternating layers in planes [020] made of two-dimensional nets of Na hydration polyhedra, and columns of Na hydration octahedra lying in planes [040], with acid moieties in between.  相似文献   

11.
By X-ray diffraction the crystal and molecular structure of iodoprotatrane (tris(2-hydroxyethyl)ammonium iodide I[HN(CH2CH2OH)3]+ (IP) at 120 K and 293 K is determined. The IP cation, as in all protatranes, has the endo conformation. The N-H bond is surrounded by three CH2CH2OH groups. The stability of this configuration is explained by the intramolecular trifurcated inductive interaction with three oxygen atoms through the space of the nitrogen atom. In the IP crystal packing, each iodine anion is linked by three strong OH...I (2.63 Å) and three weak I...H (3.13 Å) hydrogen bonds with six cations from the CH2N group. This indicates a greater nucleophilicity of the iodine atom.  相似文献   

12.
This work is aimed at the optimization of the yield and purity of non-symmetrical trialkyl sulfonium halide salts. The effects of parameters such as solvent, temperature and concentration were studied. The products were carefully analyzed and the crystal structure of [{n-CH3(CH2)15}(CH3)2S]Br determined. The overall aim of the present study is future syntheses of low-dimensional magnetic materials.  相似文献   

13.
A single crystal of a new sodium calcium iron (III) phosphate, Na4CaFe4(PO4)6, has been synthesized by a flux method and characterized by X-ray diffraction, Mössbauer spectroscopy and magnetic susceptibility measurements. The compound crystallizes in the monoclinic space group C2/c(a=12.099(5) Å, b=12.480(5) Å, c=6.404(2) Å, β=113.77(3)°, Z=2, R1=0.022, Rw2=0.066). The crystal structure belongs to the alluaudite type, characterized by the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The open framework results from Fe2O10 units of edge-sharing FeO6 octahedra, which alternate with M(1)O6 octahedra (M(1)=Na+Ca) that form infinite chains. These chains are linked together through the common corners of PO4 tetrahedra yielding two distinct tunnels of sodium cation occupation. This compound is antiferromagnetic with a Néel temperature of 35 K. Mössbauer parameters are consistent with the structural results.  相似文献   

14.
Hydrothermal reaction of zinc acetate with diethyl [(phenylsulfonyl)methyl]phosphonate as well as 1,10-phenanthroline (phen) afforded a novel zinc(II) phosphonate with the formula of [Zn4(PhSO2CH2PO3)4(phen)2(H2O)2]·2H2O. Such compound features two conformational isomeric 1D chains which are regulated by two different π···π stacking interactions. In addition, it exhibits broad blue fluorescent emission band at 387 nm.  相似文献   

15.
Combined use of elevated pressure in the liquid phase (15 kbar), a metal template and the sulfur nucleophilicity of [Pt2(μ-S)2(P-P)2] (P-P = diphosphine or 2 · monophosphine) facilitates the one-pot synthesis of 3,8-dibenzo-1,6-dithiacyclodecane. Under r.t.p., nucleophilic addition of [Pt2(μ-S)2(P-P)2] [P-P = 2 · PPh3; Ph2P(CH2)nPPh2, n = 2, 1,2-bis(diphenylphosphino)ethane (dppe), 3, 1,3-bis(diphenylphosphino)propane (dppp)] with α-α′-dichloro-o-xylene would terminate as a dithiolato bridged cation viz. [Pt2(μ-SCH2C6H4CH2S)(P-P)2]2+. Under high pressure (15 kbar) at r.t., these stoichiometric reactions progress via a “catalytic-like” pathway to yield 3,8-dibenzo-1,6-dithiacyclodecane (up to 35%), and a series of mechanistically relevant intermediates and byproducts. The dithiolated intermediates [Pt2(μ-SCH2C6H4CH2S)(P-P)2]2+ for PPh3 and dppp have been isolated as complexes and their crystal structure determined. The formation of 3,8-dibenzo-1,6-dithiacyclodecane demonstrates a convenient synthetic strategy over the multi-step synthesis of this macrocyclic dithioether.  相似文献   

16.
The effect of the carbon chain-length for Ph2P-R-PPh2 (R = -CHCH-, -CH2-CH2-, -CH2-CH2-CH2-, and -CH2-CH2-CH2- CH2-) and S-(CH2)n-pyridine ligand (n = 0 to 2) on the aurophilic interaction has been explored systematically. The effect of the N position in x-mercaptopyridine (x = 2 or 4) toward Au(I) center and/or the SR group was also investigated. X-ray structural study was made for 12 new derivatives. The Au-Au distances are below 3.0 Å for 2-S-pyridine derivatives with Ph2P-CHCH-PPh2 (t-dpen) and Ph2P-CH2-CH2-PPh2 (dppe) ligand and the pyridine N atoms come in close contact with the H atoms of these diphosphine carbon chains. A local coplanar conformation is formed between 2-S-pyridine and Au-P-CH groups for these derivatives. The carbon chain lengths are not too consequential on the induction of aurophilicity. Various infinite and/or dimer structures have been revealed from single crystal X-ray analysis for the present series of compounds.  相似文献   

17.
The title two‐dimensional coordination polymer, [Na(C2H8NO6P2)]n, was characterized using powder X‐ray diffraction data and its structure refined using the Rietveld method. The asymmetric unit contains one Na+ cation and one (1‐azaniumylethane‐1,1‐diyl)bis(hydrogen phosphonate) anion. The central Na+ cation exhibits distorted octahedral coordination geometry involving two deprotonated O atoms, two hydroxy O atoms and two double‐bonded O atoms of the bisphosphonate anion. Pairs of sodium‐centred octahedra share edges and the pairs are in turn connected to each other by the biphosphonate anion to form a two‐dimensional network parallel to the (001) plane. The polymeric layers are connected by strong O—H...O hydrogen bonding between the hydroxy group and one of the free O atoms of the bisphosphonate anion to generate a three‐dimensional network. Further stabilization of the crystal structure is achived by N—H...O and O—H...O hydrogen bonding.<!?tpb=18.7pt>  相似文献   

18.
A new vanadium (V) hydroxymonophosphate hydrate, K3(VO2)2PO4PO3OH·H2O, with a “tape-like” structure has been synthesized. This compound crystallizes in the space group P21/c with a=5.099(1) Å, b=29.168(3) Å, c=8.115(1) Å, β=91.65(1)°. Its structure consists of [V2P2O11OH] ribbons built up of corner-sharing VO5 pyramids, PO4, and PO3OH tetrahedra, interleaved with K+ ions and H2O molecules. In spite of its unidimensional character, this structure forms pentagonal tunnels. Relationships with frameworks involving tetragonal tunnels are studied.  相似文献   

19.
By checking the chemistry underlying the concept of “supramolecular cluster catalysis” we identified two major errors in our publications related to this topic, which are essentially due to contamination problems. (1) The conversion of the “closed” cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ (1) into the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), which we had ascribed to a reaction with water in the presence of ethylbenzene is simply an oxidation reaction which occurs in the presence of air. (2) The higher catalytic activity observed with ethylbenzene, which we had erroneously attributed to the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), was due to the formation of RuO2 · nH2O, caused by a hydroperoxide contamination present in ethylbenzene.  相似文献   

20.
The crystals of the [Pd3(μ-OH)(μ-CH3COO)5] complex are obtained and characterized using powder and single crystal X-ray diffraction and IR spectroscopy. The crystal structure (a = 15.6942(6) Å, b = 11.7190(3) Å, c = 9.7871(3) Å, V = 1800.05(10) Å3, space group Pna21, Z = 4) is formed from neutral trinuclear cyclic molecules of [Pd3(μ-OH)(μ-CH3COO)5], in which the OH? group, together with five CH3COO? anions, is a bridge ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号