首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
The thermal transformation of Ba exchanged zeolite X to celsian has been studied by 27Al and 29Si MAS NMR spectroscopy. Evidence for the degradation of the zeolite framework is present in the 29Si NMR spectra after thermal treatment at 850 °C. Confirmation is provided by the 29Si NMR data that synthesis of celsian via the decomposition of Ba exchanged zeolite leads to a single defect phase. Clustering of the isomorphous replacement of aluminium by silicon must occur to explain the observed 29Si chemical shifts. The 27Al NMR data show distorted aluminium co-ordination sites upon the thermal transformation of Ba exchanged zeolite X. The distortions present in the amorphous matrix are greater than those present in the monoclinic and hexagonal crystalline phases of celsian.  相似文献   

2.
This study presents for the first time an NMR spectroscopic characterization of the room and high temperature phases of (NH4)3InF6 using 19F and 115In as probe nuclei. The reversible phase transition to the cubic phase at 353 K was followed by MAS NMR in situ. Static NMR experiments of the room temperature phase and MAS NMR experiments of the high temperature phase allowed the determination of the NMR parameters of both nuclei. Finally, the scalar In-F coupling, rarely observed in solid state NMR, is evidenced in both room and high temperature phases of (NH4)3InF6, and measured in the high temperature phase.  相似文献   

3.
CeO2-γ-Al2O3 mixed oxides have been prepared by using both co-precipitation and impregnation methods followed by calcination at 650°C and investigated by 27Al MAS NMR, powder X-ray diffraction and temperature programmed reduction techniques to understand the nature of chemical interaction existing between CeO2 and γ-Al2O3. The 27Al NMR spectra of CeO2-containing samples showed an additional peak placed at 40 ppm along with the two peaks at 68 and 6 ppm which originate from the tetrahedrally and octahedrally coordinated Al3+ ions present in γ-Al2O3. As the concentration of CeO2 in the mixed oxide increased, the intensity of the 40 ppm peak increased and this was the prominent peak for CeO2-rich mixed oxide samples. The origin of this 40 ppm peak is discussed and it is inferred that this peak is due to Al3+ ions, which are present in CeO2 lattice, forming a solid solution.  相似文献   

4.
Mullite has been prepared from a new combination of precursors. An aluminum alkoxide, aluminium isopropoxide, and silicon tetrachloride, are hydrolysed in tetrahydrofuran solution by 17O enriched water. The resulting powder is chemically homogeneous, crystallizing into mullite at 980°C. The structural evolution has been studied by DTA, TGA, XRD and 17O, 27Al and 29Si MAS NMR spectroscopy.  相似文献   

5.
Two coordination compounds of palladium(II) with N-allylimidazole (l) of the general formula [PdL4]Cl2 · 3H2O (1) and trans-[PdL2Cl2] (2) have been synthesized. The crystal and molecular structure of complexes 1 and 2 was established by single-crystal X-ray diffraction analysis. The X-ray structural data were supplemented by solid-state 13C NMR measurements (CP MAS and PASS 2D). The 1D and 2D NMR studies in solution reveal that complex 1 is unstable at room temperature and undergoes reversible decomposition to 2. The method for how to preserve a complex with four allyl-imidazole ligands in solution is shown.  相似文献   

6.
A new method of preparing concentrated alumo-sols, the hydrolysis of Al-tri-sec-butylate in acidic aqueous media at 85°C, was studied in detail by varying the H2O/Al- and NO3 /Al-ratios in wide ranges. The components of the sols were characterized by 27Al NMR spectroscopy. The pH-value depends on both the chosen H2O/Al- and NO3 /Al-ratio and on the aging time of the sols and reflects the composition of the sols. Al13 polycations were detected in sols with a pH-value between 3.0 and 3.7. As a new result its presence was shown by NMR below 3.4. The Al13 content of the sols increased with pH and the maximum fraction of Al13 polycations was detected in the sol with the highest pH (3.7). Nearly 65% of the entire aluminium content of this solution is bound in the Al13 polycations. Hence, a new synthetic method for the preparation of Al13 ions containing sols was developed. Aging studies of the sols showed, that the Al13 polycations were more stable in solutions with higher pH-value. Al13 polycations were detected after an aging time of four months only in sols with a pH-value of 3.7. Tempering the aged sols at 40° to 80°C caused formation of Al13 and also of Al30 polycations.  相似文献   

7.
Complexes of general formula [CuL4][BF4] (L = benzonitrile – PhCN 2 or phenylacetonitrile – BzCN 3) have been prepared and structurally characterized by NMR spectroscopy and X-ray crystallography. Their structure and reactivity have been compared to the well known [Cu(MeCN)4][BF4] (1). The 63Cu line width and the 63Cu chemical shift have been evaluated by varying the temperature and the concentration of the complex 2 in benzonitrile solutions. The phenylacetonitrile solutions of the complex 3 give extremely broad signals which are beyond detection. Accordingly, compound 3 has been studied by 63Cu MAS NMR spectroscopy. The solution NMR data are consistent to the prevalence of dynamic equilibrium between tetra- and low-coordinated species in both complexes. The X-ray structure of 3 revealed that the copper(I) atom sits in a slightly distorted tetrahedral geometry, surrounded by four BzCN ligands.  相似文献   

8.
7Li MAS NMR spectroscopy was used to study the failure mechanisms of LiNi0.8Co0.15Al0.05O2 electrodes in Li-ion cells. Three sets of electrodes with different degrees of power fade (0%, 9% and 23%) were studied. The three electrodes were charged to various states of charge (0%, 40%, 60%, 80% and 100%) in pouch cells which were subsequently disassembled for NMR analysis. The lithium NMR shifts of the positive electrodes in the different states of charge were investigated. The results indicate that NMR spectroscopy can be used to probe particle isolation in these electrodes. Particle isolation is responsible for the capacity and power fades since some of the active material particles are disconnected from the matrix. This study also clearly showed the loss of electrochemically active lithium as the power fade increased.  相似文献   

9.
The substitution of silicon by germanium in the AST zeolite framework type, [SinGe40−nO80]*4(SDA+F) expressed as unit cell content in its cubic F-centered symmetry, has been studied. Three different kinds of templates, dimethyldiethylammonium, dimethyldiisopropylammonium and isopropyltrimethylammonium cations, were used in the hydrothermal synthesis process in fluoride medium. The products were identified with XRD, MAS NMR, SEM and thermal analysis. The analysis of the X-ray powder diagrams shows that AST crystallizes in different space group symmetries depending on the nature of the SDA and the degree of Ge-substitution. The resonance signals of 19F in MAS NMR experiments for the pure Si- and Ge-end members are at −38.2 and −15 ppm, respectively, indicating that the F-anion is located as co-template in the double-four-ring (D4R) of the tetrahedral framework. This is confirmed by Rietveld analysis of powder diffraction data of the pure Ge-end member. The peak splitting of the 19F NMR signal in pure GeO2AST-type material is related to the displacement of F location inside the D4R. Two more distinct signals at −8 and −19 ppm, respectively, are observed for X-ray pure AST-samples of intermediate compositions and assigned to fluoride in D4R built of 4[GeO4]- and 4[SiO4]-tetrahedra (4Ge, 4Si) and to (2Ge, 6Si)-D4R, respectively. An ordered distribution of Ge in the AST-framework is proposed for cubic AST with compositions around Si/Ge=1.5–1 by correlating the intensities of 19F NMR signals and the results from chemical analysis. This model is further confirmed by the quantitative analyses of the corresponding 29Si MAS NMR spectra.  相似文献   

10.
Three solids of composition SiO2, AlPO4 and 20∶80 mol/mol AlPO4/SiO2, respectively, were synthesized. Their textural properties were examined and1H MAS NMR spectroscopy was used to characterize their surface OH groups. The results reveal that the solids are amorphous and texturally suitable for use as catalysts.  相似文献   

11.
The solid state13C NMR spectra of four13CO enriched carbonyl clusters having a tri-iron metallic core have been analyzed to provide structural and dynamic information. In Fe3(CO)12 (1), the high temperature spectra suggest the occurrence of large amplitude motions of the CO groups around their position at the vertexes of the coordination polyhedron in addition to the motion involving the Fe3-triangle previously detected in the VT-13C MAS spectra.13C and31P NMR data of Fe3(CO)11PPh3 (2) indicates the presence of one molecule in the asymmetric unit in apparent disagreement with the previously reported X-ray data. Furthermore, we show that structural information can be obtained from the chemical shift tensor components readily available from the analysis of the spinning sideband manifold.  相似文献   

12.
Two separate samples of Na3C60 were prepared by direct reaction of C60 with sodium metal vapor, and subjected to different annealing times of 10 days and 16 days. Solid-state 13C and 23Na NMR, along with elemental analysis, powder X-ray diffraction (XRD) and Raman spectroscopy, were used to characterize both samples. The Raman spectra of both materials have a single peak at 1447 cm−1 which correspond to the Ag peak of C603−, consistent with the stoichiometry of NaxC60 with x=3. The powder XRD patterns are also virtually identical for both samples. However, solid-state 23Na and 13C NMR spectra of the two samples are significantly different, suggesting a relationship between annealing times and the final structure of the alkali fulleride. Variable-temperature 23Na magic-angle spinning (MAS) NMR experiments reveal the existence of two or three distinct sodium species and reversible temperature-dependent diffusion of sodium ions between octahedral and tetrahedral interstitial sites. 13C MAS NMR experiments are used to identify resonances corresponding to free C60 and fulleride species, implying that the samples are segregated-phase materials composed of C60 and non-stoichiometric Na3C60. Variable-temperature 13C MAS NMR experiments reveal temperature-dependent motion of the fullerides.  相似文献   

13.
Various kinds of aluminum species in dealuminated mordenite were investigated in detail, and the quadrupole coupling constants (QCCs) for aluminum atoms associated with these species were obtained by means of the newly introduced1H/27 AI TRAPWR method as well as27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR). QCC values of 11.3, 15.3, 13.3 and (14.0± 0.6) MHz were determined from the TRAPDOR profiles for Lewis acid sites, Bronsted acid sites (SiOHAl) and two kinds of non-framework aluminum species Al(OH) n , respectively. The source of the “invisible Al” is discussed on the basis of the NMR experimental results.  相似文献   

14.
The local environments for oxygen in yttrium-containing pyrochlores and fluorites, Y2(B1−xBx)2O7 (B=Ti, B′=Sn, Zr) are investigated by using solid state 17O MAS NMR spectroscopy. The quadrupolar coupling constants of the nucleus, 17O are sufficiently small for these ionic oxides, that high-resolution spectra are obtained from the MAS spectra. Different oxygen NMR resonances are observed due to local environments with differing numbers of metal cations (Y3+, Sn4+, Ti4+ and Zr4+), allowing the numbers of different local environments to be quantified and cation mixing to be investigated. Evidence for pyrochlore-like local ordering is detected for Y2Zr2O7, which nominally adopts the fluorite structure.  相似文献   

15.
Template guided enzymatic synthesis of conducting polyaniline (PANI) is a one-step reaction and more importantly, it is an environmentally friendly process. Understanding of the reaction and coupling mechanism at the molecular level is of paramount significance to improve its processability and conductivity. Solid-state NMR techniques are useful to investigate molecular structures of enzymatically synthesized polyaniline (PANI). The PANI sample in three different forms i.e., (a) as-synthesized, self-doped conducting form; (b) dedoped, base form and; (c) redoped, conducting form, are investigated by solid-state 13C and 15N CP/MAS NMR techniques. Solid-state NMR data analysis shows that the structural features of enzymatically synthesized PANI are similar to that of chemically synthesized PANI. The solid-state 13C CP/MAS NMR spectrum of the base form of PANI confirmed that benzenoid-quinoid repeating units are present in the backbone of the PANI polymer chain. The poly(vinylphosphonic acid) (PVP) template provides charge compensation during the chain growth of linear polyaniline. After the completion of template-guided synthesis of PANI, it is now possible that the PVP template can be completely removed from the complex by dedoping with aqueous NH4OH. The detached PANI from the PANI-PVP complex can then be redoped to conducting form without the presence of the template. The conductivity of the PANI and PANI-PVP complex are of the same order of magnitude. The solid-state 15N CP/MAS NMR chemical shifts are sensitive to charge distribution on the nitrogens in the backbone. The solid-state 15N CP/MAS NMR spectrum of the base form of the enzymatically derived PANI sample showed the clear signature for benzenoid-quinoid repeating units in the polymer backbone.

  相似文献   

16.
Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13, [Al13O4(OH)24(H2O)12]7+) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27Al pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has been applied to the AlO4 core of the ϵ-Al13 cluster with complementary theoretical simulations of the diffusion coefficient and corresponding hydrodynamic radii from a boundary element-based calculation. The tetrahedral AlO4 center of the ϵ-Al13 cluster is symmetric and exhibits only weak quadrupolar coupling, which results in favorable T1 and T2 27Al NMR relaxation coefficients for 27Al PFGSTE NMR studies. Stokes–Einstein relationship was used to relate the 27Al diffusion coefficient of the ϵ-Al13 cluster to the hydrodynamic radius for comparison with theoretical simulations, dynamic light scattering from literature, and previously published 1H PFGSTE NMR studies of chelated Keggin clusters. This first-of-its-kind observation proves that 27Al PFGSTE NMR diffusometry can probe symmetric Al environments in polynuclear clusters of greater molecular weight than previously considered.  相似文献   

17.
Crystalline Pb9Al8O21 is a model compound for the structure of non-linear optical glasses containing lone-pair ions, and its structure has been investigated by neutron powder diffraction and total scattering, and 27Al magic angle spinning NMR. Rietveld analysis (space group (No. 205), a=13.25221(4) Å) shows that some of the Pb and O sites have partial occupancies, due to lead volatilisation during sample preparation, and the non-stoichiometric sample composition is Pb9−δAl8O21−δ with δ=0.54. The NMR measurements show evidence for a correlation between the chemical shift and the variance of the bond angles at the aluminium sites. The neutron total correlation function shows that the true average Al-O bond length is 0.8% longer than the apparent bond length determined by Rietveld refinement. The thermal variation in bond length is much smaller than the thermal variation in longer interatomic distances determined by Rietveld refinement. The total correlation function is consistent with an interpretation in which AlO3 groups with an Al-O bond length of 1.651 Å occur as a result of the oxygen vacancies in the structure. The width of the tetrahedral Al-O peak in the correlation function for the crystal is very similar to that for lead aluminate glass, indicating that the extent of static disorder is very similar in the two phases.  相似文献   

18.
Based on powder X-ray diffraction and 31P Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) investigations of mixed phosphate Al0.5Ga0.5PO4, prepared by co-precipitation method followed by annealing at 900 °C for 24 h, it is shown that Al0.5Ga0.5PO4 phase crystallizes in hexagonal form with lattice parameter a=0.491(2) and c=1.106(4) nm. This hexagonal phase of Al0.5Ga0.5PO4 is similar to that of pure GaPO4. The 31P MAS NMR spectrum of the mixed phosphate sample consists of five peaks with systematic variation of their chemical shift values and is arising due to existence of P structural units having varying number of the Al3+/Ga3+ cations as the next nearest neighbors in the solid solution. Based on the intensity analysis of the component NMR spectra of Al0.5Ga0.5PO4, it is inferred that the distribution of Al3+ and Ga3+ cations is non-random for the hexagonal Al0.5Ga0.5PO4 sample although XRD patterns showed a well-defined solid solution formation.  相似文献   

19.
Two solid solutions BiMxMg(2−x)PO6 (with M2+=Zn or Cd) have been studied through 31P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZnxMg(2−x)PO6 does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn2+ for Mg2+ substitution. On the other hand, the Cd2+ for Mg2+ substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/1Cd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd2+/Mg2+ mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8 T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a2 effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.  相似文献   

20.
Nuclear Magnetic Resonance Spectroscopy (NMR) has been used on several occasions to investigate the biodurability of silicone elastomers used in silicone breast implants. In all of these cases conclusions have been convoluted by lack of sensitivity. We have improved the sensitivity of solid state NMR characterizations of silicone elastomers used in silicone breast implants by changing the physical state of the elastomer. This was achieved by cooling the sample to −90 C, below its crystalline transition temperatures, and acquiring 29Si Cross Polarization MAS (CPMAS) NMR. This approach yielded signal to noise enhancements as high as 8.5 fold for the elastomer backbone and modest improvements for (CH3)2RSiO1/2 and silica filler signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号