首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

2.
The organically templated (C6H16N2)0.5[M(HPO3)F] [M(II)=Fe (1) and Co (2)] compounds have been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structures have been determined from X-ray single-crystal diffraction data. The compounds are isostructural and crystallize in the C2/c monoclinic space group. The unit-cell parameters are a=5.607(1), b=21.276(4), , β=93.74(1)° for the iron phase and a=5.5822(7), b=21.325(3), , β=93.464(9)° for the cobalt compound with Z=4. The crystal structure of these compounds consists of [M(HPO3)F] anionic sheets. The layers are constructed from chains which contain [M2O6F3] dimeric units linked by fluoride ions. The trans-1,4-diaminocyclohexane cations are placed in the interlayer space. The IR and Raman spectra show the bands corresponding to the phosphite oxoanion and organic dication. The Dq and Racah (B and C) parameters have been calculated from the diffuse reflectance spectra in the visible region. Dq parameter is 790 cm−1 for compound (1). For phase (2) the Dq value is 725 cm−1 and B and C are 930 and 4100 cm−1, respectively. The thermal evolution of the molar magnetic susceptibilities of these compounds show maxima at 20.0 and 6.0 K for the iron(II) and cobalt(II) phases, respectively. These results indicate the existence of antiferromagnetic interactions in both compounds.  相似文献   

3.
A new open-framework iron (III) phosphite |C4N3H14|[Fe3(HPO3)4F2(H2O)2] has been solvothermally synthesized by using diethylenetriamine (DETA) as the structure-directing agent. Single-crystal X-ray diffraction analysis reveals that the compound crystallizes in the monoclinic space group C2/c having unit cell parameters a=12.877(3) Å, b=12.170(2) Å, c=12.159(2) Å, β=93.99(3)°, V=1900.9(7) Å3, and Z=4 with R1=0.0447, wR2=0.0958. The complex structure consists of HPO3 pseudo-tetrahedra and {Fe3O14F2} trimer building units. The assembly of these building units generates 3D inorganic framework with intersecting 6-, 8-, and 10-ring channels. The DETA cations are located in the 10-ring channels linked by hydrogen bonds. The Mössbauer spectrum shows that there exhibit two crystallographically independent iron (III) atoms. And the magnetic investigation shows the presence of antiferromagnetic interactions. Further characterization of the title compound was performed using X-ray powder diffraction (XRD), infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled plasma (ICP) and elemental analyses.  相似文献   

4.
A new manganese (II) phosphite with the formula Mn(HPO3) has been synthesised under mild hydrothermal conditions and autogenous pressure. Large pink coloured single crystals were obtained, allowing the resolution of the structure by x-ray diffraction. Mn(HPO3) crystallises in the P21/c monoclinic space group with a=8.036(3) Å, b=8.240(3) Å, c=10.410(3) Å, β=124.73(3)° and Z=8. The structure consists of a three-dimensional, compact framework of edge sharing MnO6 octahedra linked to phosphite groups via oxygens. The presence of the phosphite anion has been confirmed by IR spectroscopy. Mn(HPO3) presents a high thermal stability limit of 580 °C, before rapid transformation to Mn2P2O7 occurs. Photoluminescence and diffuse reflectance spectroscopy studies show the presence of high spin Mn(II) in significantly distorted octahedral coordination with Dq and Racah parameters of Dq=820, B=910 and C=3135 cm−1. The ESR spectra, performed at different temperatures, are isotropic with a g-value of 2.00(1). Magnetic measurements indicate global antiferromagnetic interactions with a ferromagnetic transition at 15 K, attributed to a canting of the antiferromagneticaly aligned spins.  相似文献   

5.
A new vanadium(III) phosphite, (C4H8N2H4)0.5(C4H8N2H3)[V4(HPO3)7(H2O)3]1.5H2O, has been synthesized hydrothermally by using V2O5, H3PO3 as reactants, piperazine as the structure-directing agent. The as-synthesized product was characterized by powder X-ray diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis, and SQUID magnetometer. Single-crystal X-ray diffraction analysis shows that the title compound crystallized in the trigonal space group (No. 165) with the parameters: , , and Z=4. Its structure is built up by alternation of octahedral VO6 or VO5(H2O) and pseudo-pyramidal HPO3 units to form infinite 2D layers, and these layers are interconnected by sharing vertex-oxygen with octahedral VO6 units to generate a 3D open-framework structure with 12-membered ring channels in a and b directions, respectively, where there exist entrapped diprotonated and mono-protonated piperazine cations, and water molecules. Magnetic measurement indicates that paramagnetic behavior is observed down to 4 K.  相似文献   

6.
Two organically templated zincophosphites, (C6H14N2)·[Zn3(HPO3)4] and (C4H14N2)·[Zn3(HPO3)4] have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction. (C6H14N2)·[Zn3(HPO3)4] crystallizes in the triclinic space group , with cell parameters, a=9.363(4) Å, b=10.051(4) Å, c=10.051(4) Å, α=85.777(13)°, β=82.091(9)°, and γ=79.783(9)°. (C4H14N2)·[Zn3(HPO3)4] crystallizes in the monoclinic space group P21/c, with cell parameters, a=9.9512(3) Å, b=10.1508(3) Å, c=17.8105(5) Å, and β=95.6510(10)°. Although the two structures are different, they have the same anionic framework compositions of [Zn3(HPO3)4]2−. Their frameworks are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo pyramids by sharing vertexes. There exist channels with an eight-membered ring window along the a- and c-axis. Powder X-ray diffraction, IR spectroscopy, 31P MAS solid-state NMR, thermogravimetric and differential thermal analyses were also carried out.  相似文献   

7.
Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C6H16N2)Zn3(HPO3)4H2O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P21/n with a=10.458(2) Å, b=14.720(3) Å, c=13.079(3) Å, β=97.93(3)°, V=1994.1(7) Å3, Z=4, R1=0.0349 (I>2σ(I)) and wR2=0.0605 (all data). The inorganic layer is built up by alternation of ZnO4 tetrahedra and HPO3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

8.
Single crystals of a new mixed-valent iron phosphate Na1/2Cu4/3Fe2(PO4)3 have been synthesized by a flux method and structurally characterized from X-ray diffraction data. Crystal data: space group ; ; ; ; α=105.881(1)°; β=107.202(1)°; γ=101.467(1)°; Z=2; R1=0.03; wR2=0.093. The three-dimensional structure was found to be closely related to that of the well known Howardevansite structural type. It results from infinite chains of CuO5 and FeO6 polyhedra, joined together by (Cu,□)O6 octahedra and PO4 tetrahedra by corner-sharing. The large cavities in framework are occupied by Na+ ions. The magnetic susceptibility study revealed an antiferromagnetic behavior with Neel temperature of approximately 40 K. The Mössbauer spectroscopy confirmed the presence of iron in both +2 and +3 oxidation states.  相似文献   

9.
Employing 1-(2-Aminoethyl) piperazine as a template, a new organically templated layered zinc phosphate-phosphite (C6H17N3)[Zn4(PO4)2(HPO3)2] has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group Cc with a=5.3272(11) Å, b=17.146(3) Å, c=22.071(4) Å, β=94.58(3)°, V=2009.5(7) Å3, Z=4, R1=0.0201 (I>2σ(I)) and wR2=0.0812 (all data). The inorganic network is based on strictly alternating ZnO4 tetrahedral units and P-centered units including PO4 tetrahedra and HPO3 pseudo-pyramids forming a double layered structure that contains columns of double six-membered rings. The diprotonated 1-(2-Aminoethyl) piperazine molecules reside in the interlayer region and interact with the inorganic network through H-bonds.  相似文献   

10.
Fe2(AsO4)F has been synthesized under mild hydrothermal conditions in the form of single crystals. The compound crystallizes in C2/c monoclinic space group with the unit cell parameters a=13.214(1), b=6.623(1), and β=116.90(2)° with Z=8. The crystal structure consists of a three-dimensional framework constructed by two kinds of chains, A and B, with 50% of population. In the chains, the environments for the iron(II) cations show penta- and hexa-coordination. The chains establish an angle of approximately 120° between them. The disordered fluoride anions in these chains given rise to [Fe(1)O4F(1)0.5(F(2)0.5)2] and [Fe(2)O4(F(1)0.5)2F(2)0.5] edge-shared polyhedra in which the fluoride anions have occupancy factors of 50% over two distinct crystallographic sites. The IR spectrum shows the characteristic bands of the (AsO4)3− groups. From the diffuse reflectance spectrum a Dq parameter of 650 cm−1 has been calculated for the Fe(II) d6 high spin cation. The Mössbauer spectrum in the paramagnetic state shows a doublet that has been fitted, according to the existence of two crystallographically independent iron environments, with two Lorentzian doublets. Magnetic measurements performed between room temperature and 5 K exhibit a maximum at 22.6 K, characteristic of antiferromagnetic interactions with a estimated “J”-exchange parameter of −1.2 K.  相似文献   

11.
A novel compound, [HN(C2H4)3N][(VO)2(HPO3)2(OH)(H2O)]·H2O, was hydrothermally synthesized and characterized by single crystal X-ray diffraction. This compound crystallizes in the monoclinic system with the space group C2/c and cell parameters a=11.0753(3) Å, b=17.8265(6) Å, c=16.5229(5) Å, and β=92.362(2)°. The structure of the compound consists of vanadium phosphite layers which are built up from the infinite one-dimensional chains of [(VO)(H2O)(HPO3)2]2− of octahedral VO5(H2O) and pseudo pyramidal [HPO3], and bridging binuclear fragments of [VO(OH)]2. Thermogravimetric analysis and magnetic susceptibility data for this compound are given.  相似文献   

12.
(C4H12N2)1.5[Fe3(HAsO4)1.02(HPO4)0.98(AsO4)0.88(PO4)0.12F5] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure was solved from X-ray single crystal data. The compound crystallizes in the monoclinic P21/c space group. The unit cell parameters are a=8.270(7), b=22.028(3), , β=99.79(2)° with Z=4. The crystal structure is formed from [Fe3(HAsO4)1.02(HPO4)0.98(AsO4)0.88(PO4)0.12F5]3− sheets with the piperazinium cations located in the interlayer space, compensating the anionic charge and establishing hydrogen bonds. The IR and Raman spectroscopies confirm the existence of both the arsenate/hydrogenarsenate and phosphate/hydrogenphosphate oxoanions and the presence of the piperazinium dication. The reflectance diffuse spectrum is in good agreement with the existence of iron(III) high spin cations in slightly distorted octahedral geometry. The values of the Dq and Racah parameters are Dq=1005, B=1020 and . The ESR spectroscopy shows the presence of ferromagnetic resonance. The g-value shifts from 1.99(1) in the 300-15 K range to 3.11(1) at lower temperatures. Magnetic measurements indicate the presence of a ferrimagnetic behavior with the existence of a weak hysteresis loop at 5 K.  相似文献   

13.
A new iron titanyl phosphate Fe0.50Ti2(PO4)3 was synthesized by both solid-state reaction and Cu2+-Fe2+ ion exchange method. The material was then characterized by X-ray diffraction, Mössbauer, magnetic susceptibility measurements and optical absorption. The crystal structure of the compound was refined, using X-ray powder diffraction data, by the Rietveld profile method; it crystallizes in the rhombohedral system, space group , with a=8.511(1) Å and c=20.985(3) Å, V=1316.45(3) Å3 and Z=6. The structure, which is compared to that of Mn0.50Ti2(PO4)3 is built up from [TiO6] octahedra and [PO4] tetrahedra which are linked by corner sharing along the c-axis. Fe2+ cations are located in half of the antiprism MI sites and are orderly distributed with vacancies within the two possible positions of the MI sites of . These results were supported by the Mössbauer studies that showed the presence of one Fe2+ site in the high spin state (t2g4eg2). The Curie-Weiss-type behavior is observed in the magnetic susceptibility. Diffuse reflectance spectrum indicates the presence of octahedrally coordinated Fe2+ ions.  相似文献   

14.
Na2Mn2(1 − x)Cd2xFe(PO4)3 (0 ≤ x ≤ 1) phosphates were prepared by solid state reaction and characterized by powder X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The X-ray diffraction patterns indicated the formation of a continuous solid solution which crystallizes in the alluaudite structural type characterized by the general formula X(2)X(1)M(1)M(2)2(PO4)3. The cation distribution, deduced from a structure refinement of the x = 0, 0.5 and 1 compositions, is ordered in the X(2) sites and disordered in the remaining X(1), M(1) and M(2) sites. The magnetic susceptibility study revealed an antiferromagnetic behaviour of the studied compounds. The 57Fe Mössbauer spectroscopy confirmed the structural results and proved the exclusive presence of Fe3+ ions.  相似文献   

15.
A novel manganese phosphite-oxalate, [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)], formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions.  相似文献   

16.
A new layered cobalt-zinc phosphite, Co(H2O)4Zn4(HPO3)6·C2N2H10 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) Å, β=114.098(4)°, V=2542.3(2) Å3, Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO4 tetrahedra, CoO6 octahedra and HPO3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH4+ cations without the collapse of the framework.  相似文献   

17.
[C6H21N4][Sb9S14O] represents the first known oxo-thioantimonate with an organic ion acting as structure director. The compound crystallizes in the non-centrosymmetric space group Cmc21 with a=29.679(2), b=9.9798(6), , , Z=4. The structure contains the hitherto unknown [SbS2O] unit as a structural motif. The [SbS3] trigonal pyramids and [SbS2O] units are joined to form a 10-membered ring with large pores having a diameter of 7.7 Å×8.3 Å. The organic template molecule acts like a tetra-dentate ligand around the O atom of the [SbS2O] group. Depending on the value chosen for the Sb-S bond lengths, the material contains a 1-, 2- or 3-dimensional anion. The optical band gap of 2.03 eV demonstrates that the material is an optical semi-conductor. Upon heating, the compound decomposes in two steps yielding finally a mixture of Sb and Sb2S3. The 121Sb Mössbauer spectrum shows a relative large line width in accordance with the superposition of the five signals.  相似文献   

18.
Two new zinc phosphites [Zn2(HPO3)2(H2PO3)][C3H5N2] 1 and [Zn2(HPO3)3][C4H7N2]2·2H2O 2 have been hydrothermally synthesized templated by imidazole and 2-methylimidazole. Single-crystal X-ray diffraction analysis reveals that the two compounds have the similar inorganic framework structures, which both exhibit 2D double layer structures with double 12-membered rings. Due to the different space-filling effect of the guest molecules, the stacking mode of adjacent layers and the arrangement mode of the organic amines are distinct. In 1, the adjacent layers are stacked in an -ABAB- sequence and monoprotonated imidazole molecules sit in the middle of 12MR windows, while in 2, the layers are stacked in an -AAAA- pattern. Monoprotonated 2-methylimidazole molecules occupy two different sites, one inserts into 12MR and the other resides in the interlayer region. Crystal data for 1: triclinic, P-1, , , , α=114.71(3)°, β=92.78(3)°, γ=113.04(3)°, , Z=2; for 2: triclinic, P-1, , , , α=68.244(7)°, β=76.143(7)°, γ=63.113(6)°, , Z=2.  相似文献   

19.
Single crystals of a new phosphate KCuFe(PO4)2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P21/n and its parameters are: a=7.958(3) Å, b=9.931(2) Å, c=9.039(2) Å, β=115.59(3)° and Z=4. Its structure consists of FeO6 octahedra sharing corners with Cu2O8 units of edge-sharing CuO5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K+ ions are located. The Mössbauer spectroscopy results confirm the exclusive presence of octahedral Fe3+ ions. The magnetic measurements show the compound to be antiferromagnetic with Cm=5.71 emu K/mol and θ=−156.5 K. The derived experimental effective moment μex=6.76μB is somewhat higher than the theoretical one of μth=6.16μB, calculated taking only into account the spin contribution for Fe3+ and Cu2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号