首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The series Ba1−xLaxTi1−xCrxO3 (0≤x≤1) was synthesized at 1400°C for about 60 h. Their structure was carefully analyzed by the use of powder X-ray diffraction and Rietveld analysis software GSAS (General Structure Analysis System). Four solid solutions are found in this series: tetragonal solid solution Ba1−xLaxTi1−xCrxO3 (0≤x≤0.029), cubic solid solution Ba1−xLaxTi1−xCrxO3 (0.0365≤x≤0.600), rhombohedral solid solution Ba1−xLaxTi1−xCrxO3 (0.700≤x≤0.873), and orthorhombic solid solution Ba1−xLaxTi1−xCrxO3 (0.956≤x≤1). There are corresponding two-phase regions between the adjacent two solid solutions. The detailed lattice parameters are presented. The relationship between the lattice parameters and the composition of the solid solutions is developed.  相似文献   

2.
Three series of vacancy-free quaternary clathrates of type I, Ba8ZnxGe46−xySiy, Ba8(Zn,Cu)xGe46−x, and Ba8(Zn,Pd)xGe46−x, have been prepared by reactions of elemental ingots in vacuum sealed quartz at 800 °C. In all cases cubic primitive symmetry (space group Pm3?n, a∼1.1 nm) was confirmed for the clathrate phase by X-ray powder diffraction and X-ray single crystal analyses. The lattice parameters show a linear increase with increase in Ge for Ba8ZnxGe46−xySiy. M atoms (Zn, Pd, Cu) preferably occupy the 6d site in random mixtures. No defects were observed for the 6d site. Site preference of Ge and Si in Ba8ZnxGe46−xySiy has been elucidated from X-ray refinement: Ge atoms linearly substitute Si in the 24k site whilst a significant deviation from linearity is observed for occupation of the 16i site. A connectivity scheme for the phase equilibria in the “Ba8Ge46” corner at 800 °C has been derived and a three-dimensional isothermal section at 800 °C is presented for the Ba-Pd-Zn-Ge system. Studies of transport properties carried out for Ba8{Cu,Pd,Zn}xGe46−x and Ba8ZnxSiyGe46−xy evidenced predominantly electrons as charge carriers and the closeness of the systems to a metal-to-insulator transition, fine-tuned by substitution and mechanical processing of starting material Ba8Ge43. A promising figure of merit, ZT ∼0.45 at 750 K, has been derived for Ba8Zn7.4Ge19.8Si18.8, where pricey germanium is exchanged by reasonably cheap silicon.  相似文献   

3.
The structures of Li1+xyNb1−x−3yTix+4yO3 solid solutions within the so-called M-phase field in the Li2O-Nb2O5-TiO2 system were investigated using high-resolution transmission electron, microscope (HRTEM) and single-crystal X-ray diffraction. The results demonstrated that the phase field is not a solid solution but rather a homologous series of commensurate intergrowth structures with LiNbO3-type (LN) slabs separated by single [Ti2O3]2+ corundum-type layers. The thickness of the LN slab decreases with increasing Ti-content from ∼55 to 3 atomic layers in the metastable H-Li2Ti3O7 end-member. The LN slabs accommodate a wide range of Ti4+/Nb5+ substitution, and for a given homolog the distribution of Ti and Nb is not uniform across the slab. A single-crystal X-ray diffraction study of a structure composed of nine-layer LN slabs revealed preferential segregation of Ti to the slab surfaces which apparently provides partial compensation for the charge on the adjacent [Ti2O3]2+ corundum layers. The extra cations in phases with x>0 are accommodated through the formation of Li-rich Li2MO3-type layers in the middle of the LN slabs. The fraction of layers with extra cations increases with increasing Ti-content in the structure.  相似文献   

4.
Structural and photoluminescence properties of undoped and Ce3+-doped novel silicon-oxynitride phosphors of Ba4−zMzSi8O20−3xN2x (M=Mg, Sr, Ca) are reported. Single-phase solid solutions of Ba4−zMzSi8O20−3xN2x oxynitride were synthesized by partial substitutions of 3O2−→2N3− and Ba→M (M=Mg, Ca, Sr) in orthorhombic Ba2Si4O10. The influences of the type of alkaline earth ions of M, the Ce3+ concentration on the photoluminescence properties and thermal quenching behaviors of Ba3MSi8O20−3xN2x (M=Mg, Ca, Sr, x=0.5) were investigated. Under excitation at about 330 nm, Ba3MSi8O20−3xN2x:Ce3+ (x=0.5) exhibits efficient blue emission centered at 400-450 nm in the range of 350-650 nm owing to the 5d→4f transition of Ce3+. The emission band of Ce3+ shifts to long wavelength by increasing the ionic size of M due to the modification of the crystal field, as well as the Ce3+ concentrations due to the Stokes shift and energy transfer or reabsorption of Ce3+ ions. Among the silicon-oxynitride phosphors of Ba3MSi8O18.5N:Ce3+, M=Sr0.6Ca0.4 possesses the best thermal stability probably related to its high onset of the absorption edge of Ce3+.  相似文献   

5.
The crystal structure of the defect perovskite series Sr1−xTi1−2xNb2xO3 has been investigated over a range of temperatures using high-resolution synchrotron X-ray diffraction, neutron diffraction and electron diffraction. Three distinct regions were observed: 0<x≤0.125 was a solid solution of Sr1−xTi1−2xNb2xO3 with minor SrTiO3 intergrowth, 0.125<x≤0.2 was a pure Sr1−xTi1−2xNb2xO3 solid solution adopting the cubic perovskite type structure (Pmm) and for x>0.2 Sr0.8Ti0.6Nb0.4O3 and Sr3TiNb4O15 formed a two phase region. The cubic structure for Sr0.8Ti0.6Nb0.4O3 was stable over the temperature range 90-1248 K and the thermal expansion co-efficient was determined to be 8.72(9)×10−6 K−1. Electron diffraction studies revealed diffuse scattering due to local scale Ti/Nb displacements and slightly enhanced octahedral rotations that did not lead to long range order. The octahedral rotations were observed to ‘lock-in’ at temperatures below ∼75 K resulting in a tetragonal structure (I4/mcm) with anti-phase octahedral tilting about the c-axis.  相似文献   

6.
ABO3 amorphous materials, such as BaTiO3 (BT), SrTiO3 (ST), PbTiO3 (PT), and BaxSr1−xTiO3 (BST) have recently attracted a good deal of attention due to their ferroelectric and electro-optical properties. Intense photoluminescence at room temperature was observed in amorphous titanate doped with chromium (BaxSr1−xTi1−yCryO3) prepared by the polymeric precursor method. Results indicated that substantial luminescence at room temperature was achieved with the addition of small Cr contents to amorphous BaxSr1−xTi1−yCryO3. Further addition of Cr or crystallization were deleterious to the intensity of the luminescent peak obtained for excitation using λ=488.0 nm.  相似文献   

7.
Perovskite-type cobaltates in the system La2Co1+z(MgxTi1−x)1−zO6 were studied for z=0≤x≤0.6 and 0≤x<0.9, using X-ray and neutron powder diffraction, electron diffraction (ED), magnetic susceptibility measurements and X-ray absorption near-edge structure (XANES) spectroscopy. The samples were synthesised using the citrate route in air at 1350 °C. The space group symmetry of the structure changes from P21/n via Pbnm to Rc with both increasing Mg content and increasing Co content. The La2Co(MgxTi1−x)O6 (z=0) compounds show anti-ferromagnetic couplings of the magnetic moments for the Co below 15 K for x=0, 0.1 and 0.2. XANES spectra show for the compositions 0≤x≤0.5 a linear decrease in the L3/(L3+L2) Co-L2,3 edge branching ratio with x, in agreement with a decrease of the average Co ion spin-state, from a high-spin to a lower-spin-state, with decreasing nominal Co2+ ion content.  相似文献   

8.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

9.
The morphologies of the charge carriers in the perovskite system SrFe1−xTixO3−δ are explored by transport and magnetic measurements. Oxygen vacancies are present in all samples, but they do not trap out the Fe3+ ions they introduce. The x=0.05 composition was prepared with three different values of δ. They all show small-polaron conduction above 225 K; but where there is a ratio c=Fe4+/Fe<0.5, the polaron morphology appears to change progressively with decreasing temperature below 225 K to two-Fe polarons that become ferromagnetically coupled in an applied magnetic field at lower temperatures; With an applied field of 2500 Oe, divergence of the paramagnetic susceptibility for zero-field-cooled and field-cooled samples manifests a greater stabilization of ferromagnetic pairs on cooling in the applied field. With a c>0.5, the data are consistent with a disproportionation reaction 2Fe4+=Fe3++Fe(V)O6/2 that inhibits formation of two-Fe polarons and, on lowering the temperature, creates Fe3+-Fe(V)-Fe3+ superparamagnetic clusters.  相似文献   

10.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

11.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

12.
13.
A new ternary, intermetallic compound, Ba14Zn5−xAl22+x, was synthesized by heating the pure elements at 900°C. This compound crystallizes in the monoclinic space group I2/m, Z=2, with a=10.474(2) Å, b=6.0834(14) Å, c=34.697(8) Å and β=90.814(4)°. The crystal structure of Ba14Zn5−xAl22+x consists of [Zn5−xAl22+x] slabs that are built with a novel, two-dimensional (2D) network of Zn and Al atoms involving eight-membered rings sandwiched between two layers of trigonal bipyramids interconnected by three-center bonding. Tight-binding, linear muffin-tin orbital (TB-LMTO-ASA) calculations have been performed to understand the relationship between composition and orbital interactions in the electronegative element framework. This new structure is closely related to the high-pressure, cubic Laves-type structure of BaAl2 as well as the ambient pressure binary compound, Ba7Al13. The degree of valence electron charge transfer from the electropositive Ba atoms is related to the Al:Ba molar ratio in the Ba-Zn-Al system.  相似文献   

14.
New phase (Nd,Ce)2+xCaCu2O6+y was prepared at a high-pressure/high-temperature condition of 6 GPa and 1300°C. It had a nonstoichiometric composition close to Nd2.16Ce0.225CaCu2O6+y. According to X-ray diffraction pattern, the Nd2.16Ce0.225CaCu2O6+y phase has a tetragonal lattice with a = 3.845(1) Å, c = 19.349(5) Å. However, electron microscopic observations revealed a complicated shear structure for this phase. Magnetic susceptibility and magnetic hysteresis measurements were performed for the Nd2.16Ce0.225CaCu2O6+y sample and it was found that the phase undergoes a weak ferromagnetic transition at 150 K. Below ≈40 K, complicated magnetic behavior was observed suggesting the presence of second weak ferromagnetic transition near 40 K.  相似文献   

15.
The new phases Ba2LaMNb4O15: M=Mn, Fe were prepared by solid state reaction at 1100 °C. They have the tetragonal tungsten bronze structure, space group P4/mbm, at room temperature. The two octahedral sites show partial order of M and Nb with preferential occupancy of the smaller B(1) sites by M. Both phases have high permittivities 90±15 over the range 10-320 K. Ba2LaFeNb4O15 is highly insulating with bulk conductivity ?10−8 ohm−1 cm−1 at 25 °C and tan δ?0.001 over the range 100-320 K and at 105 Hz. Solid solutions between these new phases and the compositionally and structurally related relaxor ferroelectric Ba2LaTi2Nb3O15 show gradual loss of ferroelectric behaviour attributed to replacement of polarisable Ti4+ by a mixture of (Mn, Fe)3+ and Nb5+.  相似文献   

16.
LaMnxV1−xO4−δ(0≤x≤1) samples were characterized using thermogravimetry, thermo-dilatometry, high-temperature X-ray diffraction (HTXRD) and temperature-programmed reduction techniques, with an objective to explore the role of substitution on their thermo-physical properties, which may have a direct bearing on their catalytic behavior. Even though the substituted compositions (x<0.8) were of a single phase, their reduction occurred in two steps, a lower temperature step corresponding to Mn4+→Mn3+/Mn2+ and another higher temperature one related to V5+→V3+. The dilatometric measurements gave similar values of linear thermal expansion coefficient (α1) at temperatures up to 600 °C, both for LaVO4 and substituted samples. A different behavior was, however, observed at higher temperatures, whereas thermal contraction was observed in case of LaVO4 for measurements at temperatures above 700 °C, the value of α1 remained almost constant in case of the substituted samples. Furthermore, the HTXRD data revealed expansion in cell volume for all temperatures up to 950 °C, irrespective of the substitution. These results therefore point to a higher degree of sintering in LaVO4 as compared to Mn-doped samples on heating at temperatures above 700 °C. It is inferred that the resistance to sintering and the lowering of the reduction temperature are both responsible to the higher catalytic activity of the substituted samples and their compositional stability during the repeated cycles of reduction-reoxidation, as reported earlier [Appl. Catal. A 205 (2001) 295].  相似文献   

17.
This paper describes the results of electron microscopy, high-temperature powder neutron diffraction, and impedance spectroscopy studies of brownmillerite-structured Ba2In2O5 and perovskite structured Ba(InxZr1−x)O3−x/2. The ambient temperature structure of Ba2In2O5 is found to adopt Icmm symmetry, with disorder of the tetrahedrally coordinated (In3+) ions of the type observed previously in Sr2Fe2O5. Ba2In2O5 undergoes a ∼6-fold increase in its ionic conductivity over the narrow temperature range from ∼1140 K to ∼1230 K, in broad agreement with previous studies. This transition corresponds to a change from the brownmillerite structure to a cubic perovskite arrangement with disordered anions. Electron microscopy investigations showed the presence of extended defects in all the crystals analyzed. Ba(InxZr1−x)O3−x/2 samples with x=0.1 to 0.9 adopt the cubic perovskite structure, with the lattice parameter increasing with x.  相似文献   

18.
Nd18Li8Co3FeO39−y, Nd18Li8CoFe3O39−y and Nd18Li8Co3TiO39−y have been synthesised and characterised by neutron powder diffraction, magnetometry and Mössbauer spectroscopy. Their cubic structure (Pm3?n, a∼11.9 Å) is based on intersecting <1 1 1> chains comprised of alternating octahedral and trigonal-prismatic coordination sites. These chains lie within hexagonal-prismatic cavities formed by a Nd-O framework. Each compound has an incomplete oxide sublattice (y∼1), with vacancies located around the octahedral sites that lie at the points of chain intersection. These sites are fully occupied by a disordered arrangement of transition-metal cations but only 75% of the remaining octahedral sites are occupied. The trigonal-prismatic sites are fully occupied by lithium except in the case of Nd18Li8CoFe3O39−y where some iron is present. Antiferromagnetic interactions are present on the Nd sublattice in each composition, but a spin glass forms below 5 K when a high concentration of spins is also present on the octahedral sites.  相似文献   

19.
New phases which arise from partial substitution of Ti4+ by Cr3+ and Li+ of the compound La2/3TiO3 have been obtained, giving rise to the series La1.33LixCrxTi2−xO6 (x=0.66, 0.55 and 0.44). These phases adopt a perovskite-type structure as deduced from their structural characterization. Rietveld's analyses of neutron diffraction data show that it is orthorhombic (S.G. Pbnm) with ordered domains. Conductivity has been examined by complex impedance spectroscopy and it increases with increasing lithium and chromium content. These materials behave as mixed conductors with low activation energies. Magnetic susceptibility variation with temperature shows antiferromagnetic interactions at the lowest temperatures.  相似文献   

20.
Zn2TixSn1−xO4 (0?x?1) solid solutions with an inverse spinel structure (Fd3m) were synthesized by solid-state reactions at 1300°C of the stoichiometric mixtures of ZnO, TiO2 and SnO2. X-ray diffraction, thermogravimetric and differential thermal analyses, scanning electron microscopy, transmission electron microscopy and BET specific surface area measurements were used to gain insights into the solid-state reactions and phase transformation of the system. Optical absorption property of the Zn2TixSn1−xO4 (0?x?1) solid solutions was studied with the ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The Zn2TixSn1−xO4 (0?x?1) solid solutions showed optical absorptions of the semiconductors in the near ultraviolet region; the adsorption band shifts with the composition of the solid solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号