首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose detection plays very important roles in diagnostics and management of diabetes. The search for novel catalytic materials with appropriate architectures is the key step in the fabrication of highly sensitive glucose sensors. In this work, α-Ni(OH)2 roselike structures (Ni(OH)2-RS) assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method through the hydrolysis of nickel chloride in the mixed solvents of water and ethanol with the assistance of polyethylene glycol (PEG). The structure and morphology of the roselike α-Ni(OH)2 were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and N2 adsorption–desorption isotherm measurement. TEM and FE-SEM images showed that the synthesized Ni(OH)2 was roselike and the size of the leaf-shaped nanosheet was about 5 nm in thickness, which leads to larger active surface areas and faster electron transfer for the detection of glucose. Compared with the bare GCE and bulk Ni(OH)2/GCE, the Ni(OH)2-RS/GCE had higher catalytic activity toward the oxidation of glucose. Under the optimal conditions, the Ni(OH)2-RS/GCE offers a variety of merits, such as a wide linear response window for glucose concentrations ranging from 0.87 μM to 10.53 mM, short response time (3 s), a lower detection limit of 0.08 μM (S/N = 3), as well as long term stability and repeatability.  相似文献   

2.
β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach.The different conditions of preparation and catalytic properties of the products were studied and discussed.The products were characterized by X-ray diffraction,transmission electron microscopy,scanning electron microscopy,selected area electron diffraction(SAED),and gas chromatograph.  相似文献   

3.
Monodispersed AgGaS2 three-dimensional (3D) nanoflowers have been successfully synthesized in a “soft-chemical” system with the mixture of 1-octyl alcohol and cyclohexane as reaction medium and oleylamine as surfactant. The crystal phase, morphology and chemical composition of the as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HTEM), respectively. Results reveal that the as-synthesized AgGaS2 nanoflowers are in tetragonal structure with 3D flower-like shape. Controlled experiments demonstrated that the shape transformation of AgGaS2 nanocrystals from 3D nanoflowers (50 nm) to nanoparticles (10-20 nm) could be readily realized by tuning the reaction parameters, e.g., the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol, the concentration of oleylamine, etc. The UV-vis and PL spectra of the obtained AgGaS2 nanoflowers and colloids were researched. In addition, the photoelectron energy conversion (SPV) of AgGaS2 nanoflowers was further researched by the surface photovoltage spectra.  相似文献   

4.
SnO2 urchin-like structures composed of nanorods with diameters of 10-15 nm and lengths of 50-70 nm have been hydrothermally synthesized via a H2O2-assisted route without any surfactant, using SnCl2 as raw material. With the addition of methenamine (HMT), SnO2 hollow microspheres with diameters of 2-3 μm and shell thickness of 60-140 nm were also prepared. The as-obtained products were examined using diverse techniques including X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM and photoluminescence spectra. The gas sensitivity experiments have demonstrated that the as-synthesized SnO2 materials exhibit good sensitivity to alcohol vapors, which may offer potential applications in gas sensors.  相似文献   

5.
Manganese oxide (hausmannite) polyhedral nanocrystals were prepared by a microwave-assisted solution-based method using Mn(CH3COO)2 and (CH2)6N4 at 80 °C. The as-prepared Mn3O4 nanocrystals were characterized by means of X-ray diffraction, field-emission transmission electron microscopy, field-emission scanning electron microscopy and Raman spectrum. Mn3O4 polyhedral nanocrystals prepared by microwave heating at 80 °C for 60 min were of cubic and rhombohedral shapes with the edge lengths in the range of 15-40 nm. Mn3O4 nanocrystals grew following the Ostwald ripening mechanism with increasing reaction time. High-resolution transmission electron microscopy and selected area electron diffraction confirm that the as-obtained polyhedral nanocrystals were single-crystalline. The magnetic behavior of Mn3O4 nanocrystals was studied. Mn3O4 nanocrystals show an obvious ferromagnetic behavior at low temperatures. The magnetic behavior of Mn3O4 nanocrystals was sensitive to crystal size. Ferromagnetic onset temperatures (Tc) of samples 1 and 3 are 40.6 and 41.1 K, respectively, lower than that observed for bulk Mn3O4 (42 K).  相似文献   

6.
Formation of nano-sized Y2O3-doped CeO2 (YCO) was observed in the chemical reaction between proton conducting Y2O3-doped BaCeO3 (BCY) and CO2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li2ZrO3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO2 (a=5.410 (1) Å) structure and BaCO3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO2 reported in the literature.  相似文献   

7.
Hexagonal vaterite-type LuBO3:Tb3+ microflower-like phosphors have been successfully prepared by an efficient surfactant- and template-free hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. The as-obtained phosphor samples present flowerlike agglomerates composed of nanoflakes with thickness of 40 nm and high crystallinity in spite of the moderate reaction temperature of 200 °C. The reaction mechanism has been considered as a dissolution/precipitation mechanism; the self-assembly evolution process has been proposed on homocentric layer-by-layer growth style. Under ultraviolet excitation into the 4f8→4f75d transition of Tb3+ at 248 nm (or 288 nm) and low-voltage electron beam excitation, LuBO3:Tb3+ samples show the characteristic green emission of Tb3+ corresponding to 5D47F6, 5, 4, 3 transitions with the 5D47F5 transition (542 nm) being the most prominent group, which have potential applications in fluorescent lamps and field emission displays.  相似文献   

8.
Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature. The effects of hydrothermal reaction conditions on magnetic properties were also discussed in details. The values of saturation magnetization (Ms) and coercive fore (Hc) for Fe-Co/CoFe2O4 nanocomposite are 113 emu/g and 1.4 kOe, respectively. Furthermore, CoFe2O4 ferrite with a single-domain critical size of 70 nm was fabricated by controlling the hydrothermal reaction conditions carefully, which presents high coercive force (ca. 4.6 kOe) and high squareness ratio (ca. 0.65). One interesting thing is Ms value of CoFe2O4 ferrite with a diameter of 40 nm is 86 emu/g which is comparable to that of the bulk counterpart.  相似文献   

9.
The synthesis of manganese oxide (Mn3O4) nanoparticles by using thermal decomposition and its physicochemical characterization are being reported in present investigation. As a new precursor, [bis(2-hydroxy-1-naphthaldehydato)manganese(II)] complex was used in the presence of oleylamine (C18H37N) as both surfactant and solvent to control the size of resulting nanoparticle. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Raman spectrum. Synthesized manganese oxide nanoparticles have a tetragonal structure with average size of 9–24 nm. The phase pure samples were characterized by using X-ray photoelectron spectroscopy (XPS) for Mn 2p level. The values of binding energies are consistent with the relative values are reported in the literature. As a comparison between two methods, the novel precursor thermally was treated in solid state reaction in different temperature, 400, 500, and 600 °C and the products were characterized by SEM images. Magnetic property of the as-prepared Mn3O4 nanoparticle shows a ferromagnetic behavior with high saturation magnetization and coercivity.  相似文献   

10.
CeO2 nanotubes have been synthesized facilely using carbon nanotubes (CNTs) as templates by a liquid phase deposition method. The properties of the CeO2 nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) as well as thermogravimetry and differential thermal analysis (TG-DTA). The obtained CeO2 nanotubes with a polycrystalline face-centered cubic phase have a uniform diameter ranging from 40 to 50 nm. The CeO2 nanotubes are composed of many tiny interconnected nanocrystallites of about 10 nm in size. The pretreatment of CNTs and calcination temperature were confirmed to be the crucial factors determining the formation of CeO2 nanotubes. A possible formation mechanism has been suggested to explain the formation of CeO2 nanotubes.  相似文献   

11.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

12.
Nickel ferrite nanoparticles have several possible applications as cathode materials for rechargeable batteries, named “lithium-ion” batteries. In this study, NiFe2O4 was prepared by microwave induced thermohydrolysis. The obtained nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), BET method, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). All the results show that the microwave one-step flash synthesis leads in a very short time to NiFe2O4 nanoparticles with elementary particles size close to 4-5 nm, and high specific surfaces (close to 240 m2/g). Thus, microwave heating appears as an efficient source of energy to produce quickly nanoparticles with complex composition as ferrite.  相似文献   

13.
Nanosized Zn2SnO4 (ZTO) particles were successfully synthesized by a simple hydrothermal process in water/ethylene glycol mixed solution using amines (ethylamine, n-butylamine, n-hexylamine, and n-octylamine) as mineralizer. The products were characterized by X-ray diffractions (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption. The results indicated that the hydrothermal conditions, such as alkaline concentration (n-butylamine), reaction temperature, solvent composition, and the kind of amines, had an important influence on the composition, crystallinity, and morphology of the product. The as-synthesized ZTO samples exhibited high activities and durabilities for photodegradation of methyl orange and the activities were mainly affected by the crystallinities of the samples. A hexagonal-shaped ZTO (H-ZTO) sample was prepared in 0.53 M of n-butylamine solution at 180 °C for 20 h and its optical properties were characterized by UV-Vis diffuse reflectance and Photoluminescence (PL) spectra. Furthermore, the photocatalytic H2 evolution reaction from ethanol aqueous solution over H-ZTO was also investigated.  相似文献   

14.
α-MnO2 nanowires or nanorods have been selectively synthesized via the hydrothermal method in nitric acid condition. The α-MnO2 nanowires hold with average diameter of 50 nm and lengths ranging between 10 and 40 μm, using MnSO4·H2O as manganese source; meanwhile, α-MnO2 bifurcate nanorods with average diameter of 100 nm were obtained by adopting MnCO3 as starting material. The morphology of α-MnO2 bifurcate nanorods is the first one to be reported in this paper. X-ray powder diffraction (XRD), field scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Experimental results indicate that the concentrated nitric acid plays a crucial role in the phase purity and morphologies of the products. The possible formation mechanism of α-MnO2 nanowires and nanorods has been discussed.  相似文献   

15.
Nanosized MgF2 was synthesized by precipitation in microemulsions of water in cyclohexane stabilized by polyethylene glycol tert-octylphenyl ether. The synthesized MgF2 powder was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), BET specific surface area, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results showed that the synthesized powder was a MgF2 powder with a crystallite size in the range of 9-11 nm and a specific surface area of 190 m2/g.  相似文献   

16.
Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH3COO)2·4H2O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 °C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 °C. The products were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of β-Ni(OH)2 nanosheets was investigated through the cyclic voltammogram (CV) measurement.  相似文献   

17.
A new reaction of MgCl2·4H2O with CCl2F2 is investigated by DTA and TG from room temperature to 350 °C. It is observed that MgF2 was obtained between 252 and 350 °C, Below the temperature, MgCl2·4H2O dehydrates and hydrolyzes to MgCl2 and Mg(OH)Cl, which are the real reactants of the reaction with CCl2F2. The formation of MgF2 is ascribed to the reaction of MgCl2 and Mg(OH)Cl with HF, which forms by decomposition of CCl2F2 with the taking part in of H2O released from dehydration of hydrated magnesium chloride on the surface of MgCl2 and Mg(OH)Cl, which catalyzes the decomposition of CCl2F2 in this case. Consequently, the reactions are tested in the fluid-bed condition. It is found that MgF2 formed at temperatures down to 200 °C in a fluid-bed reactor. This reaction may be used as a method of disposing of the environmentally sensitive CCl2F2 (rather than release into the atmosphere). It is also a method for the preparation of MgF2.  相似文献   

18.
The hexagram and arrayed β-FeOOH nanorods were first synthesized free of surfactants through the solvent-thermal method. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectrum (EDAX) and thermal gravimetric analysis (TGA) were used to characterize the as-prepared products. The TEM and FESEM images showed that hexagram β-FeOOH and arrayed rod-like β-FeOOH with an average diameter of 10-15 nm and an average length of 100 nm (aspect ratio is about 10) were prepared. Electrochemical tests show that these nanorods deliver a large discharge capacity of 277 mA h g−1 versus Li metal at 0.1 mA cm−2 (voltage at 1.5-4.2 V). Treated the as-synthesized rod-like β-FeOOH by annealing, rhombus hematite was obtained.  相似文献   

19.
Synthesis of submicrometer crystalline particles of cobalt carbonate was achieved hydrothermally using different cobalt salts and urea with a molar ratio from 1:3 to 1:20 (cobalt salt:urea) in aqueous solutions at 160 °C for 24-36 h, in the presence of cetyltrimethylammonium bromide (CTAB) as a surfactant. Nanoparticles of Co3O4, with an average size from 30 to 39 nm, were obtained by thermal decomposition of CoCO3 samples at 500 °C for 3 h in an electrical furnace. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis spectra and thermal analysis. Studying the optical properties of the as-prepared cobalt oxide nanoparticles showed the presence of two band gaps, the values of which confirmed the semiconducting properties of the prepared Co3O4.  相似文献   

20.
A low-temperature solution-phase method has been demonstrated for the synthesis of uniform nanorods of Bi2S3 with diameter of 18 nm and length of below 200 nm. Transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) studies revealed that these nanorods were grown from a colloidal dispersion of amorphous Bi2S3 particles, which was first formed through a thermal reaction between Bi-thiol complexes Bi(SC12)3 and thioacetamide (TAA) in a pure dodecanethiol (C12SH) solvent at a temperature of 95 °C. Based on these studies, the growth mechanism of Bi2S3 nanorods was properly proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号