首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quaternary selenides Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15 were synthesized from the elements in sealed silica tubes; their crystal structures were determined by single-crystal and powder X-ray diffraction. Both compounds crystallize in monoclinic space group C2/m (No.12), with lattice parameters of Sn2Pb5Bi4Se13: a = 14.001(6) Å, b = 4.234(2) Å, c = 23.471(8) Å, V = 1376.2(1) Å3, R1/wR2 = 0.0584/0.1477, and GOF = 1.023; Sn8.65Pb0.35Bi4Se15: a = 13.872(3) Å, b = 4.2021(8) (4) Å, c = 26.855(5) Å, V = 1557.1(5) Å3, R1/wR2 = 0.0506/0.1227, and GOF = 1.425. These compounds exhibit tropochemical cell-twinning of NaCl-type structures with lillianite homologous series L(4, 5) and L(4, 7) for Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15, respectively. Measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps; Sn2Pb5Bi4Se13 is n-type, whereas Sn8.65Pb0.35Bi4Se15 is a p-type semiconductor with Seebeck coefficients −80(5) and 178(7) μV/K at 300 K, respectively.  相似文献   

2.
Three samples of Pb0.9−xSn0.1GexTe with x=0.25, 0.35, 0.6 were prepared by heating the mixtures above the melting point of the constituent elements followed by quenching in water. The x=0.6 sample is close to the center of the immiscibility region, while the x=0.25 and 0.35 samples are in the Pb rich region inside the spinodal miscibility gap. Microstructural investigations using Powder X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy revealed both GeTe-rich and PbTe-rich phases. The samples were uniaxially hot pressed and the thermoelectric properties were characterized in the temperature range 2-400 K using a commercial apparatus and from 300 to 650 K with a custom designed setup. The best sample (x=0.6) reached zT≈0.6 at 650 K, while the x=0.25 and 0.35 samples showed thermal instability at elevated temperatures.  相似文献   

3.
Nano-sized Cu6Sn5 alloy powders were prepared by a co-precipitation reductive route using a hydrothermal method at 80 °C. The nano-size and morphology of the synthesized Cu6Sn5 alloy powders were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained morphologies, chemical compositions are comparatively discussed. A variety of synthesis parameters, such as time, capping agent and sort of reductant, has an effect on the morphology of the obtained materials, and will be particularly highlighted.  相似文献   

4.
Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p‐type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.  相似文献   

5.
A single method, based on gravimetric and polarographic analysis, has been developed to determine, in the same sample, the fundamental constituents and some doping elements in the PbxSn1?xTe system. First tellurium is separated by sulfur dioxide in an acid solution (5% in HCl). This medium is suitable both for the total tellurium separation and for the subsequent tin precipitation by phenylarsonic acid. Moreover, this analytical procedure allows determination in the same sample, the concentration of some doping elements such as copper, cadmium, and zinc which are necessary to vary some physical properties of the PbxSn1?xTe semiconductor system. The trace elements were determined by stripping voltammetry after tellurium, tin, and lead separation. The residual solution contains a variable amount of phenylarsonic acid which makes difficult quantitative polarographic measurements, because the electrodissolution potentials are varied and peak heights are masked. However, polarographic measurements are not altered through a wide range of phenylarsonic acid concentration if the solution is previously neutralized.  相似文献   

6.
The luminescence properties of Eu2+, Sn2+, and Pb2+ in SrB6O10 have been studied both at room-temperature and liquid-helium temperature and the decay times of Sn2+ and Pb2+ in this matrix have been measured and analyzed. According to the emission spectrum of Eu2+ there seems to be three different cation sites in SrB6O10. Europium, tin, and lead were also used as sensitizers for Mn2+ and the energy transfer processes were characterized. Eu2+-Mn2+ energy transfer was inefficient due to the transfer within different Eu2+ centers. The sensitization action of Sn2+ and Pb2+ on Mn2+ was different because lead-lead energy transfer occurs (even at 4.2 K) but tin-tin transfer can be neglected. A fast diffusion model for the Pb2+ system is suggested.  相似文献   

7.
Thin (<15 μm) samples of lead tin telluride, Pb1?xSnxTe (x = 0.21, 0.25, 0.55, and 0.75) have been studied by temperature dependent Mössbauer spectroscopy using the 23.8 keV gamma radiation of 119mSn. The tin atom occupies a lattice site having cubic symmetry (QS = 0 ± 0.020 mm sec?1) over the temperature range 78 ≤ T ≤ 240 K, and there is no evidence for a rhombic (low temperature) to cubic (high temperature) phase transition such as that reported for SnTe in this temperature interval. The lattice temperature as probed by the Sn atom is independent of the compositional parameter x and is similar to that reported for SnTe from Mössbauer studies and for Pb0.63Sn0.37Te from X-ray powder diffraction data. Radiation damage produced by 2-MeV proton irradiation to a total fluence of ~1017 cm?2 at liquid nitrogen temperature does not have any effect on the Mössbauer parameters, possibly because the major damage is annealed at temperatures below 150 K.  相似文献   

8.
The heat capacities of Pb2P2Se6 and Pb1.424Sn0.576P2Se6 were measured at temperatures between 10 and 320 K for the former and between 10 and 330 K for the latter. The heat capacities values were analyzed by harmonic approximation using the Debye and Einstein functions. They were calculated using 3 Debye and 7, 7, 7, 6 Einstein sets. The calculated heat capacities were in good agreement with the observed ones.  相似文献   

9.
A new transparent conductor, containing pentavalent antimony, In4+xSn3−2xSbxO12, has been synthesized for 0?x?1.5. The latter exhibits an ordered oxygen-deficient fluorite structure with an ordered distribution of Sb5+ and In3+/Sn4+ species in the octahedral and seven-fold coordinated sites, respectively. More importantly, it is shown that the electronic conductivity of this transparent conducting oxide (TCO) at room temperature, is one order of magnitude larger for x=1 (In5SnSbO12) than for x=0 (In4Sn3O12) and it turns to a semi-metallic behavior in contrast to In4Sn3O12 which is a semi-conductor. The potential of this new material, as TCO, is also shown by its reflectance spectra, similar to In4Sn3O12, involving only a small increase of the optical bandgap, by 0.15 eV.  相似文献   

10.
The thermoelectric properties of Pb0.5Sn0.5Te doped with In at 1.0, 2.0, and 3.0×1019/cm3 and sintered at a high pressure and high temperature (HPHT) of 4.0 GPa and 800 or 900 °C, respectively, have been studied. All samples show p-type semiconducting behavior with positive thermopower. We find that HPHT sintering of conventionally synthesized materials improves their thermoelectric properties. The highest power factor is obtained for In doping of 2.0×1019/cm3 with 13.5 μW/cm K2 at 230 °C. The corresponding figure of merit is 1.43×10−3/K. This represents a twofold improvement in thermoelectric figure of merit, compared to the conventionally sintered materials reported in the literature. When exposed to 400 °C for 10 days, samples sintered at 900 °C exhibit more stable thermoelectric properties, while the properties of those sintered at 800 °C deteriorated. These results demonstrate that HPHT sintering is a viable and controllable way of tuning the thermoelectric properties of PbTe-based materials.  相似文献   

11.
Quaternary chalcogenides PbxSn6−xBi2Se9 (x=0-4.36) were synthesized with solid-state methods; their structures were determined from the X-ray diffraction of single crystals. PbxSn6−xBi2Se9 crystallizes in an orthorhombic space group Cmcm (No. 63); the structure features a three-dimensional framework containing slabs of NaCl-(3 1 1) type that exhibits identical layers containing seven octahedra units, which expand along the direction [0 1 0]. Each slab contains fused rectangular units that are connected to each other with M-Se contacts in a distorted octahedral environment. Calculations of the band structure, measurements of Seebeck coefficient and electrical conductivity confirm that these compounds are n-type semiconductors with small band gaps and large electrical conductivities.  相似文献   

12.
A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn0.72[BPO4]0.28 obtained by ex-situ dispersion of Sn in a borophosphate matrix consists of Sn particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn0.72[BPO4]0.28 composite in galvanostatic mode show reversible capacities of about 450 and 530 mAh g−1, respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by 119Sn Mössbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous SnII composite oxide and shows that in the case of Sn0.72[BPO4]0.28, the surface of the tin clusters is mainly formed by SnII in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn0. The determination of the recoilless free fractions f (Lamb-Mössbauer factors) leads to the effective fraction of both Sn0 and SnII species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio on the electrochemical behaviour has been analysed for several Snx[BPO4]1−x composite materials (0.17<x<0.91). The cell using the compound Sn0.72[BPO4]0.28 as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g−1 at C/5 rate).  相似文献   

13.
In this study, the tin(II) oxy-hydroxychloride Sn21O6Cl16(OH)14 has been synthesised and investigated. This compound is the synthetic equivalent of mineral abhurite, which was discovered in 1985 as a tin corrosion product formed on the surface of tin ingots after long immersion in seawater. The Mössbauer parameters of Sn21O6Cl16(OH)14 determined at various temperatures are reported and discussed for the first time. At room temperature, the isomer shift and the quadrupole splitting are, respectively, δ=3.22 mm s−1 and Δ=1.71 mm s−1, relative to the centroid of the spectrum of BaSnO3. The Mössbauer recoil-free fraction has been also evaluated over a wide range of temperature. At 300 K, the recoil-free fraction of Sn21O6Cl16(OH)14 is f300=0.09±0.02.  相似文献   

14.
The compound CsSn2F5 has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity (σ∼2.5×10−2 Ω−1 cm−1 at 520 K). The crystal structure of the high temperature superionic phase (labelled α) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) Å, c=19.739(5) Å and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn… All the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn2+. The structure of α-CsSn2F5 is discussed in relation to two other layered F conducting superionic phases containing Sn2+ cations, α-RbSn2F5 and α-PbSnF4 and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn2+ in promoting dynamic disorder within an anion substructure is also briefly addressed.  相似文献   

15.
A simple procedure of neutron activation analysis for the determination of 16 impurities in PbxSn1–xTe with detection limits from 1×10–4% for Ni and Zr to 2×10–9% for Sc has been developed. The procedure is based on extraction chromatographic separation of impurities from the irradiated sample.  相似文献   

16.
本文对乙二胺溶液中裸露金属原子簇用119Sn及207Pb核磁共振作了研究。对每个峰做了标识。根据谱线强度进行分析,得知溶液中锡与铅的比例大于固体中的比例。从自由能的角度看,Pb2Sn74-是最不稳定的一种原子簇,本文还对谱线中各条线都进行了理论拟合,结果与实验相吻合。  相似文献   

17.
A two‐step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self‐compensated SnTe (that is, Sn1.03Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03?xAgxTe resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83Ag0.03Mn0.17Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 μW cm?1 K?2 at 816 K in Sn0.83Ag0.03Mn0.17Te was attained. The lattice thermal conductivity of Sn0.83Ag0.03Mn0.17Te reached to an ultralow value (ca. 0.3 W m?1 K?1) at 865 K, owing to the formation of Ag7Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83Ag0.03Mn0.17Te.  相似文献   

18.
A two-step optimization strategy is used to improve the thermoelectric performance of SnTe via modulating the electronic structure and phonon transport. The electrical transport of self-compensated SnTe (that is, Sn1.03Te) was first optimized by Ag doping, which resulted in an optimized carrier concentration. Subsequently, Mn doping in Sn1.03−xAgxTe resulted in highly converged valence bands, which improved the Seebeck coefficient. The energy gap between the light and heavy hole bands, i.e. ΔEv decreases to 0.10 eV in Sn0.83Ag0.03Mn0.17Te compared to the value of 0.35 eV in pristine SnTe. As a result, a high power factor of ca. 24.8 μW cm−1 K−2 at 816 K in Sn0.83Ag0.03Mn0.17Te was attained. The lattice thermal conductivity of Sn0.83Ag0.03Mn0.17Te reached to an ultralow value (ca. 0.3 W m−1 K−1) at 865 K, owing to the formation of Ag7Te4 nanoprecipitates in SnTe matrix. A high thermoelectric figure of merit (z T≈1.45 at 865 K) was obtained in Sn0.83Ag0.03Mn0.17Te.  相似文献   

19.
The crystal structure of SrLaBO4 contains triangular borate groups. The luminescence of mercury-like ions (Sn2+, Sb3+, Tl+, Pb2+, Bi3+) in this host lattice is characterized by a large Stokes shift. The Pb2+ is a very efficient activator at room temperature. The luminescent properties are discussed in terms of earlier models related to an off-center position of the metal ion. The emission of Eu3+ shows that the crystal structure has a disordered nature and confirms an off-center position. Energy transfer from Pb2+ to Eu3+ and Tb3+ was studied and found to be inefficient.  相似文献   

20.
The crystal structure of the ternary intermetallic compound Yb3Pd2Sn2 has been determined ab initio from powder X-ray diffraction data. The compound crystallizes as a new structure type in the orthorhombic space group Pbcm and lattice constants a=0.58262(3), b=1.68393(8), c=1.38735(7) nm. Yb3Pd2Sn2 is composed of a complex [Pd2Sn2]δ− polyanionic network in which the Yb ions are embedded. A comparison between this structure and those of Eu3Pd2Sn2 and Ca3Pd2Sn2, other novel polar intermetallic compounds, was made. DC susceptibility and 170Yb Mössbauer spectroscopic measurements indicate a close-to divalent Yb behavior. Moreover, a hybridization between 4f and conduction electrons is suggested by electronic structure calculations and heat capacity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号