首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
We present a simple, easy and reproducible method to systematically control the dimension and shape evolution of zinc oxide (ZnO) as thin film on glass substrate by chemical bath deposition (CBD). The only varying factor to control crystal transformation is the molar ratio of Cd2+/Zn2+, Rm, in the initial chemical solution. With the increase of Rm, ZnO crystals transformed from long-and-slim hexagonal rods to fat-and-short hexagonal pyramids, and then to twinning hexagonal dots as observed by scanning electron microscopy (SEM). Film crystallinity was characterized by X-ray diffraction (XRD). Chemical component analysis by energy dispersive spectroscopy (EDS) showed that most cadmium was present in the residual solution instead of the developed film and the precipitate at the bottom of beaker. The mechanism of the cadmium effect, with different initial concentrations, on ZnO crystal transformation was tentatively addressed. We believe that cadmium influences the chelate ligands adsorption onto plane of ZnO crystals, alters the crystal growth orientation, and thus directs the transformation of the size and shape of ZnO crystals.  相似文献   

2.
One-dimensional structure of ZnO nanorod arrays on nanocrystalline TiO2/ITO conductive glass substrates has been fabricated by cathodic reduction electrochemical deposition methods in the three-electrode system, with zinc nitrate aqueous solution as the electrolyte, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence (PL) spectra. The effects of film substrates, electrolyte concentration, deposition time, and methenamine (HMT) addition on ZnO deposition and its luminescent property were investigated in detail. The results show that, compared with on the ITO glass substrate, ZnO is much easily achieved by electrochemical deposition on the TiO2 nanoparticle thin films. ZnO is hexagonally structured wurtzite with the c-axis preferred growth, and further forms nanorod arrays vertically on the substrates. It is favorable to the growth of ZnO to extend the deposition time, to increase the electrolyte concentration, and to add a certain amount of HMT in the system, consequently improving the crystallinity and orientation of ZnO arrays. It is demonstrated that the obtained ZnO arrays with high crystallinity and good orientation display strong band-edge UV (375 nm) and weak surface-state-related green (520 nm) emission peaks.  相似文献   

3.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

4.
The close relationship of the structure of ternary molybdenum chalcogenides to molecular cluster compounds suggests that these chalcogenides might be synthesized from such clusters or be solubilized as clusters. However, in contrast to molybdenum halide clusters which can be obtained in solution from the solid phase, many attempts to solubilize these chalcogenide clusters were unsuccessful. This is the first report that some of the pseudo-one-dimensional compounds (M2Mo6X6, X = Se, Te; M = Li, Na) can be dissolved when exposed to highly polar solvents such as dimethylsulfoxide or N-methylformamide. We show using optical microscopy, TEM, and light scattering that some of these solutions contain individual (Mo3X3)1 chains. This is also the first example of a purely inorganic transition-metal polymer solution. The behavior with respect to flocculation is consistent with the double layer theory. We show that the (Mo3X3)1 chains can be oriented in solution.  相似文献   

5.
Thin films of cadmium sulfide (CdS) have been wet chemically deposited onto fluorine-doped tin oxide (FTO) coated conducting glass substrates by using non-ionic surfactant; Triton-X 100. An aqueous solution contains cadmium sulphate as a cadmium and thiourea as sulphur precursor. Ammonia used as a complexing agent. The results of measurements of the x-ray diffraction, Raman spectroscopy, optical spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer Emmett Teller (BET) surface areas and atomic force microscopy were used for the characterization of the films. These results revealed that the films are polycrystalline, consisting of CdS cubic phase. The films show a direct band gap with energy 2.39 eV. The films show interconnected nanowalls like morphology with well-defined surface area. Finally, the photoelectrochemical (PEC) performance of Triton-X mediated CdS thin film samples were studied. The sample shows photoelectrochemical (PEC) performance with maximum short circuit current density (Jsc) 1.71 mA/cm2 for larger area (1 cm2) solar cells.  相似文献   

6.
In this paper, large-scale, single-crystalline ZnO nanotube arrays were directly fabricated onto F-doped SnO2 (TCO) glass substrate via an electrochemical deposition method from an aqueous solution for the first time. The tubes had a preferential orientation along the [0 0 0 1] direction and hexagon-shaped cross sections. The novel nanostructure could be easily fabricated without a prepared layer of seeds on the substrate. The surface condition of substrate material and the experimental conditions played a key role in the nanotube formation. A possible formation mechanism has been proposed.  相似文献   

7.
Decoration of TiO2 nanotube films (TiO2 nanotube arrays (TNAs)) with CdS nanoparticles has been pursued for a broad range of applications that goes from solar cells to biological sensors. In most synthesis methods, the scale-up of devices has been challenging due to the poor contact at the chalcogenide/oxide interface. In this work, we validate the electrochemical/thermal/chemical route as a superior strategy to sensitize TNAs with CdS nanoparticles when compared with conventional methods. The process consisted of (i) electrodeposition of cadmium on TNAs to ensure strong bonding between TiO2 and Cd precursor particles, (ii) air annealing of Cd-decorated TNAs to thermally oxidize cadmium to cadmium oxide, and (iii) total sulfurization of cadmium oxide to obtain CdS in an hexagonal phase matching that of TNAs. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses indicated the complete transformation of cadmium precursor particles into CdS and a good surface coverage of the internal/external walls of TNAs. When compared to samples prepared by successive ionic layer adsorption and reaction (SILAR), electrochemical impedance spectroscopy data revealed the improvement of the electrical properties of the TNA matrix due to the sulfurization process and a lower contact resistance at the CdS/TNA interface. These improvements explain the superior photoelectrochemical response of CdS/TNA photoelectrodes obtained by the electrochemical/thermal/chemical route.  相似文献   

8.
Zinc stannate (ZnSnO3, Zn2SnO4) and its precursor, i.e. zinc hydroxystannate (ZnSn(OH)6), have emerged as technological nanomaterials for different applications. Herein, we report synthesis of polycrystalline zinc hydroxystannate (ZHS) film on glass substrate through facile and efficient microwave assisted hydrothermal growth. The method comprises of three steps; deposition of ZnO seed films on glass substrates through spray pyrolysis, growth of ZnO nanorod arrays over the seeded substrates through microwave assisted hydrothermal method and transformation of the as-synthesized ZnO nanorod arrays into the ZHS films through microwave treatment in aqueous precursor solution of SnCl4 and NaOH. The films were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction and scanning electron microscopy (SEM). The films contain two crystalline phases namely ZnO with [002] as preferred growth direction and ZnSn(OH)6 preferably grown along [200] vector. The obtained ZHS films consist of crystals of exclusively cubic structure with sizes up to several microns. Microwave irradiation time, NaOH/SnCl4 molar ratio, concentration of Sn4+ ions, and the applied power are the four parameters which influence the size, aerial density and growth rate of ZHS microblocks.  相似文献   

9.
A highly sensitive and fast-response biosensor based on cupric hydroxide/oxide (Cu(OH)2/CuO) nanotube arrays (CNA) was successfully fabricated in this work. CNAs were prepared on copper electrode surface by simply immersing copper electrode in an aqueous solution of NaOH and (NH4)2S2O8. The morphology and the composition of the CNAs were characterized by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD), respectively. The electrocatalytic activity of the CNA modified copper electrodes (CNA/Cu) towards glucose oxidation was investigated by cyclic voltammetry and amperometry. The CNA/Cu showed good non-enzymatic electrocatalytic responses to glucose in alkaline media and can be used for the development of enzyme-free glucose sensors.  相似文献   

10.
On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH2PO4 (KDP).  相似文献   

11.
Bi2Te3-Te arrays with sheet-rod multiple heterostructure were obtained in large scale, using Te nanorod arrays as the in-situ templates under solvothermal process. The array is formed by the ordered Bi2Te3-Te rods where Bi2Te3 sheets distribute from the top face to the bottom face along the Te rod vertically. The microstructure of the heterostructure was studied through X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The electrical conductivity and Seebeck coefficient of the arrays were also studied. The course of reaction was monitored so as to propose a possible growth mechanism of such novel heterostructure. The key for the preparation of such heterostructure is to balance the velocity between the dissolution of Te rods and the formation of Bi2Te3 sheets. This synthetic approach could be promising to prepare self-assembled low-dimensional nanoarrays of metals and semiconductors with high yield.  相似文献   

12.
AAO/Ti/Si substrate was successfully synthesized by a two-step electrochemical anodization of the aluminum film on the Ti/Si substrate and then used as template to grow nanowire arrays. The ordered MnO2 nanowire arrays with about 40 nm diameters had been directly fabricated on AAO/Ti/Si substrate by direct current (DC) electrodeposition. The microstructure of the nanowire arrays was investigated by field-emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Their electrochemical characterization was performed using cyclic voltammetry in 0.5 M Na2SO4 aqueous solution. The synthesized MnO2 nanowires had amorphous nature until 400 °C. The deal capacitive behavior was obtained when the as-prepared sample was heat-treated at 200 °C. The specific capacitance of the electrode was about 254 F/g.  相似文献   

13.
This article describes the preparation of multi-walled carbon nanotube—chalcogenide glass composite by direct synthesis and the melt-quenching method. The carbon nanotubes—chalcogenide glass composite was characterized by high-resolution transmission electron microscopy (HRTEM), TEM/energy-dispersive X-ray spectroscopy, low energy electron excited X-ray spectroscopy, Raman spectroscopy, spectroscopic ellipsometry, microhardness, and impedance spectroscopy. CNTs-AgAsS2 glass composite possess highly increased ionic conductivity, from σ25 °C=4.38±0.0438×10−6 to σ25 °C=6.57±0.0657×10−6 S cm−1 and decreased refractive index from n=2.652 to 2.631 at the wavelength λ=1.55 μm.  相似文献   

14.
Laser ablation of CeO2 target in vacuum (5×10−4 Pa) was used to produce nanometer-size condensates, which deposited as yellowish top coating and whitish bottom coating on a soda-lime glass substrate. The top coating consists of optically anisotropic columnar domains conformable to monoclinic Ce6O11 phase coexisting with cubic (c) CeO2−x, whereas the bottom coating is optically isotropic c-CeO2−x due to oxygen uptake from the substrate. Transmission electron microscopy indicated that the columnar domains are made up of defective fluorite-type nanoparticles, which tended to coalesce over (111) plane to form dislocations and (111)-preferred orientation, an artificial epitaxy owing to rotation-coalescence of (111) faceted CeO2−x condensates on the amorphous substrate and/or within the coating.  相似文献   

15.
Electrochemical synthesis of ordered alumina nanowire arrays   总被引:2,自引:0,他引:2  
Ordered Al2O3 nanowire arrays embedded in the nanochannels of anodic alumina membranes (AAMs) were synthesized by electrodepostion at room temperature. Our synthetic route yielded large quantities of Al2O3 nanowires of uniform size and shape that are ~40 μm long with diameters of 70 nm. The Al2O3 nanowire structures were characterized by scanning and transmission electron microscopies, high-resolution transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Electronic Publication  相似文献   

16.
A simple hydrothermal reaction between Ba(NO3)2 and K2SiF6 results in the formation of 1D rod-like BaSiF6. The BaSiF6 rods can act as efficient precursors for production of tubular SiO2 by hydrothermal reaction in alkaline solutions. Powder X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), high resolution electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM) were used to characterize the phase and morphology of the final product. The experiments indicated the amount of NaOH, reaction temperature, and reaction time played important roles in the transformation process. A possible growth mechanism of tubular silica was proposed.  相似文献   

17.
《Solid State Sciences》2003,5(7):1063-1067
Ordered Al nanowire arrays with the same nanowire density but the diameters decrease radially embedded in one piece of anodic alumina membranes were successfully fabricated by two-step synthesis: electrodeposition of Zn and replacement in AlCl3 solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected-area electron diffraction techniques were used to characterize the Al nanowires obtained. SEM and TEM images taken from the different areas of Al nanowire arrays show that we can control the growth of aligned Al nanowires with different diameters in a single process at the same time. The investigation results not only have potential applications in photoelectric devices but also open up a new method for fabricating nano-scale materials.  相似文献   

18.
Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution   总被引:1,自引:0,他引:1  
Ni-doped ZnO rod arrays were successfully prepared on glass substrate from the aqueous solution at a temperature of 80 °C. The densities, diameters, and lengths of the rods can easily be well controlled through the concentrations of dopants, and the dopant Ni ions were incorporated into the wurtzite-structure of ZnO crystal. Room temperature photoluminescence spectrum of rod arrays show a strong emission band at 410 nm, and the oxygen deficiencies in ZnO structures were significantly reduced with Ni doped in ZnO rod arrays. The field dependence of magnetization measured at room temperature exhibited the obvious ferromagnetic properties.  相似文献   

19.
不同取向的CoSb3纳米线阵列的电化学法制备   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,金属纳米线及其阵列由于其新奇的物理和化学特性和在纳米器件方面潜在的应用前景,越来越受到人们的关注。氧化铝模板合成一维纳米材料具有设备简单、制作方便等优点,因而成为近年来人们常用的一种方法。利用电化学沉积的方法在多孔氧化铝模板中沉积各种成分的纳米线已成为纳米材料制备的一种常见的方法。这种方法不仅可以得到大面积有序的纳米线阵列,还可以根据需要调节孔洞的大小来控制纳米线的直径[1 ̄3]。最近理论研究结果预言[4 ̄6],由于纳米材料的量子限域效应,热电材料的纳米线将有比其相应块体材料更高的品质因数n,这极大地激…  相似文献   

20.
In this paper, a simple sol–gel route has been adopted in developing substrate surface for the first time. Only by adjusting the concentration of precursor solution, LaAlO3 (LAO) nanodot arrays were directly obtained on LAO single crystal substrate, without incorporating additional processing steps. Subsequently, YBa2Cu3O7?x (YBCO) superconducting films were prepared on the nanodot arrays using a low-fluorine solution process. In contrast, J c of YBCO films grown on the substrate developed with nanodot arrays is almost three times as large as that of YBCO films grown on undeveloped substrate in an applied magnetic field with the strength of 3 Tesla. The pinning force density (F p ) of YBCO film on the nanodot arrays developed substrate is 2.7 GN/m3 which exceeds that (1.8 GN/m3) of YBCO films on undeveloped substrate. The results of cross-section transmission electron microscope (TEM) images show that the extended defects along the ab planes of YBCO, induced by the developed substrate with nanodot arrays, should be the origin of the J c enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号