首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkali metal-rare earth phosphate crystal of NaLa(PO3)4 has been synthesized by high temperature solid-state reactions and structurally characterized by single crystal X-ray diffraction analysis, for the first time. It crystallizes in the monoclinic P21/n space group with lattice parameters: a=7.2655(3), b=13.1952(5), , β=90.382°(1), , Z=4. It is composed of LaO8 polyhedra and [(PO3)4]4− chains sharing oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The IR spectrum, absorption spectrum, and emission spectrum of the compound have been investigated. The absorption edge is located at 340 nm (3.60 eV). The calculated total and partial densities of states indicate that the top of valence bands is mainly built upon O-2p states which interact with P-3p states via σ (P-O) interactions, and the low conduction bands mostly originates from unoccupied La-5d states. The P-O bond is mostly covalent in character, and the ionic character of the Na-O bond is larger than that in the La-O bond.  相似文献   

2.
A sodium gadolinium phosphate crystal, Na3GdP2O8, has been synthesized by a high-temperature solution reaction, and it exhibits a new structural family of the alkali-metal-rare-earth phosphate system. Although many compounds with formula M3LnP2O8 have been reported, but they were shown to be orthorhombic [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] rather than monoclinic as shown in this paper. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group C2/c and the cell parameters: a=27.55 (25), b=5.312 (4), c=13.935(11) Å, β=91.30(1)°, and V=2038.80 Å3, Z=4. Its structure features a three-dimensional GdP2O83− anionic framework with two different types of interesting tunnels at where Na atoms are located by different manners. The framework is constructed by Gd polyhedra and isolated PO4 tetrahedra. It is different from the structure of K3NdP2O8 [R. Salmon, C. Parent, M. Vlasse, G. LeFlem, Mater. Res. Bull. 13 (1978) 439] with space group P21/m that shows only one type of tunnel. The emission spectrum and the absorption spectrum of the compound have been investigated. Additionally, the calculations of band structure, density of states, dielectric constants, and refractive indexes have been also performed with the density functional theory method. The obtained results tend to support the experimental data.  相似文献   

3.
A novel compound Ba2ZnV2O8 has been synthesized in high temperature solution reaction and its crystal structure has been characterized by means of single crystal X-ray diffraction analysis. It crystallizes in monoclinic system and belongs to space group P21/c with a=7.9050(16), b=16.149(3), , β=90.49(3). It builds up from 1-D branchy chains of [ZnV2O84−], and the Ba2+ cations are located in the space among these chains. The IR spectrum, ultraviolet-visible diffuse reflection integral spectrum and fluorescent spectra of this compound have been investigated. The calculated results of energy band structure by the density functional theory method show that the solid-state compound of Ba2ZnV2O8 is an insulator with direct band gap of 3.48 eV. The calculated total and partial density of states indicate that the top valence bands are contributions from the mixings of O-2p, V-3d, and Zn-3d states and low conduction bands mostly originate from unoccupied antibonding states between the V-3d and O-2p states. The V-O bonds are mostly covalence characters and Zn-O bonds are mostly ionic interactions, and the ionic interaction strength is stronger between the Ba-O than between the Zn-O. The refractive index of nx, ny, and nz is estimated to be 1.7453, 1.7469, and 1.7126, respectively, at wavelength of 1060 nm for Ba2ZnV2O8 crystal.  相似文献   

4.
An alkali-metal indium phosphate crystal, K3In3P4O16, has been synthesized by a high-temperature solution reaction and exhibits a new structure in the family of the alkali-metal indium phosphates system. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group P21/n, and the following cell parameters: a=9.7003(18), b=9.8065(18), c=15.855(3) Å, β=90.346(3)°, V=1508.2(5) Å3, Z=4, R=0.0254. It possesses three-dimensional anionic frameworks with tunnels occupied by K+ cations running along the a-axis. The emission and absorption spectra of the compound have been investigated. Additionally, the calculations of energy band structure, density of states, dielectric constants and refractive indexes have been performed with the density functional theory method. Also, the two-photon absorption spectrum is simulated by two-band model. The obtained results tend to support the experimental data.  相似文献   

5.
The crystal structure of Sr4Mn2NiO9 has been refined on single crystal. This phase belongs to the series A1+x(AxB1–x)O3 (x=1/3) related to the 2H-hexagonal perovskite. The structure contains transition metals in chains of oxide polyhedra (trigonal prisms and octahedra); neighboring chains are separated from each other by the Sr atoms. The sequence of the face sharing polyhedra along the chains is two octahedra + one trigonal prism. Mn occupies the octahedra and Ni is disordered in the trigonal prism with ≈80% in the pseudo square faces of the prism and ≈20% at the centre. This result has been confirmed by XANES experiments at Mn K and Ni K edges, respectively. Sr4Mn2NiO9 is antiferromagnetic with a Néel temperature at T=3 K. The Curie constant measured at high temperature is in good agreement with ≈80% of the Ni2+ ions in the spin state configuration S=0.  相似文献   

6.
Cr2V4O13, a tetravanadate of Cr3+ has been prepared by repeated heating of stoichiometric amounts of Cr2O3 and V2O5 and its crystal structure is refined by Rietveld refinement of the powder XRD data. This compound crystallizes in a monoclinic lattice with unit cell parameters: a=8.2651(3), b=9.2997(3), c=14.5215(5) Å, β=102.618(3)°, V=1089.21(6) Å3 and Z=4 (Space group: P21/c). The U shaped (V4O13)6− formed by corner connected VO4 tetrahedra links the Cr2O10 (dimers of two edge shared CrO6 octahedra) forming a three dimensional network structure of Cr2V4O13. This compound is stable up to 635 °C and peritectically decomposes to orthorhombic CrVO4 and V2O5 above this temperature. A possible long range antiferromagnetic ordering below 10 K is suggested from the squid magnetometry and electron paramagnetic resonance (epr) spectroscopic studies of Cr2V4O13.  相似文献   

7.
X-ray, Raman and infrared (IR) studies of the Sr3Y(BO3)3 (BOYS) single crystal grown by the Czochralski technique are presented. The crystal structure is trigonal, space group (no. 148), and comprises six formula units in the unit cell with the hexagonal axes a=12.527(2) and c=9.280(2) Å. The assignment of the observed vibrational modes is proposed on the basis of lattice dynamics calculations. The unusual large bandwidth of the internal modes and the enhancement of the principal mean square thermal displacements for BO3 and Y(1) indicate that some type of disorder is present in the studied crystal.  相似文献   

8.
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4.  相似文献   

9.
Bi3Fe0.5Nb1.5O9 was synthesized using conventional solid state techniques and its crystal structure was refined by the Rietveld method using neutron powder diffraction data. The oxide adopts an Aurivillius-type structure with non-centrosymmetric space group symmetry A21am (a=5.47016(9) Å, b=5.43492(9) Å, c=25.4232(4) Å), analogous to other Aurivillius compounds that exhibit ferroelectricity. The Fe and Nb cations are disordered on the same crystallographic site. The [(Fe,Nb)O6] octahedra exhibit tilting and distortion to accommodate the bonding requirements of the Bi cations located in the perovskite double layers. Magnetic measurements indicate non-Curie-Weiss-type paramagnetic behavior from 300 to 6 K. Measurements of dielectric properties and electrical resistivity exhibited changes near 250-260 °C and are suggestive of a ferroelectric transition.  相似文献   

10.
A new borate, LiNaB4O7, has been synthesized and characterized by single-crystal X-ray structure determination. The material crystallizes in the orthorhombic system, noncentrosymmetric space group Fdd2, with unit cell dimensions a=13.325(2), b=14.099(2), c=10.243(2) Å, Z=16, and V=1924.3(7) Å3. Like Li2B4O7, the structure is built of two symmetrically independent, interpenetrating polyanionic frameworks built from condensation of the B4O9 fundamental building block, which is comprised of two distorted BO4 tetrahedra and two BO3 triangles. The interpenetrating frameworks produce distinct tunnels that are selectively occupied by the Li and Na atoms. Large single crystals exhibiting an optical absorption edge with λ<180 nm have been grown via the top-seeded-solution-growth method. The SHG signal (0.15× potassium dihydrogen phosphate (KDP)) is consistent with the calculated components of the SHG tensor and the approximate centrosymmetric disposition of the independent and interpenetrating frameworks. A complete analysis of polarized IR and Raman spectra confirms a close relationship between the title compound and Li2B4O7.  相似文献   

11.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

12.
IR, Raman, X-ray, electron absorption and luminescence studies have been performed for novel laser Nd3BWO9 and Eu3BWO9 borotungstates exhibiting non-centrosymmetric crystal structures. The assignment of observed vibrational modes to respective symmetry and vibrations of atoms has been proposed. These studies have shown that vibrational and electronic properties of these crystals can be better explained when P63 symmetry is assumed, instead of previously proposed P3 one. The crystal structure refinement has also confirmed that symmetry of the Eu3BWO9 borotungstates is P63, not P3.  相似文献   

13.
Na3Cu2O4 and Na8Cu5O10 were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN3 and NaNO3. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na3Cu2O4: P21/n, Z=4, a=5.7046(2), b=11.0591(4), c=8.0261(3) Å, β=108.389(1)°, 2516 independent reflections, R1(all)=0.0813, wR2 (all)=0.1223; Na8Cu5O10: Cm, Z=2, a=8.228(1), b=13.929(2), , β=111.718(2)°, 2949 independent reflections, R1(all)=0.0349, wR2 (all)=0.0850), the main feature of both crystal structures are CuO2 chains built up from planar, edge-sharing CuO4 squares. From the analysis of the Cu-O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na3Cu2O4 these ions alternate in the chains, in Na8Cu5O10 the periodically repeated part consists of five atoms according to CuII-CuII-CuIII-CuII-CuIII. The magnetic susceptibilities show the dominance of antiferromagnetic interactions. At high temperatures the compounds exhibit Curie-Weiss behaviour (Na3Cu2O4: , , Na8Cu5O10: , , magnetic moments per divalent copper ion). Antiferromagmetic ordering is observed to occur in these compounds below 13 K (Na3Cu2O4) and 24 K (Na8Cu5O10).  相似文献   

14.
Crystals of NaMg3Al(MoO4)5 doped with 0.5% Cr3+ ions have been synthesized and characterized by a single-crystal X-ray structure analysis and IR, Raman, electron absorption and luminescence spectroscopic studies. It has been shown that NaMg3Al(MoO4)5 crystallizes in the structure, with a=6.8744(8) Å, b=6.9342(7) Å, c=17.605(2) Å, α=87.788(8)°, β=87.727(9)°, γ=78.501(9)°, Z=2. The characteristic feature of the structure is its enormously large thermal displacement parameter for sodium, even at 105 K. The IR and Raman spectra indicate significant interactions between the MoO42− ions in the structure. The electron absorption, excitation and luminescence studies have shown that there are at least two different sites of incorporated Cr3+ ions in the NaMg3Al(MoO4)5 crystal structure. They differ themselves by strength of crystalline field. One of them is characterized by Cr3+ in low ligand field and 4T24A2 emission whereas the second is characterized by higher strength of the crystal field and dominant 2E4A2 emission. Temperature-dependent studies show that the compound does not exhibit any phase transition.  相似文献   

15.
Karrooite, MgTi2O5, is a promising ceramic pigment due to its high refractoriness and refractive indices, as well as its ability to host transition metal ions in two crystallographically distinct octahedral sites. The colouring performance was investigated combining X-ray powder diffraction with UV-vis-NIR spectroscopy on karrooite doped with V, Cr, Mn, Fe, Co or Ni (M) according to the formula Mg1−xTi2−xM2xO5, with x=0.02 and 0.05. Transition metals solubility in the karrooite lattice is not complete and a second phase is always present (geikielite or rutile). Structural data proved that incorporation of different chromophore ions into the karrooite structure affects unit cell parameters, bond length distances and angles, site occupancies and therefore cation order-disorder. Optical spectra exhibit broad absorbance bands of Co(II), Cr(IV), Fe(III), Mn(II), Mn(III), Ni(II), V(IV) with distinct contributions by cations in the M1 and M2 sites. Karrooite pigments have colours ranging from orange to brown-tan (Cr, Fe, Mn, V) to green (Co) and yellow (Ni) that are stable in low-temperature (<1050 °C) ceramic glazes and glassy coatings.  相似文献   

16.
A nonmetal pentaborate [C6H13N2][B5O6(OH)4] (1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) Å, b=14.143(3) Å, c=11.003(2) Å, β=113.97(3)°, V=1451.1(5) Å3, Z=4. The anionic units, [B5O6(OH)4], are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C6H13N2]+ cations are located. Second-harmonic generation (SHG) measurements on the powder samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP).  相似文献   

17.
A new chromium-phosphate has been prepared under hydrothermal conditions for the first time. It crystallizes in the Monoclinic system, space group C2/c, a=17.002(3) Å, b=26.333(5) Å, c=16.017(4) Å, β=96.63 (3)°, V=7123.07(2) Å3 and Z=4. The crystal structure displays a centrosymmetric complex aggregate [Cr9P12O58H12]17−, constructed from the unprecedented enneanucleus chromic core Cr9O10 with peripheral ligations provided by 12 phosphate groups. The sodium ions and water as guests fill in the cavities among the clusters to satisfy the charge balance and keep the structural stability. The magnetic measurement indicates the existence of antiferromagnetic interactions.  相似文献   

18.
CuSbTeO3Cl2 has been isolated during an investigation of the system Cu2O:TeCl4:Sb2O3:TeO2. The new compound is light yellow and crystallises in the monoclinic system, space group C2/m, a=20.333(5) Å, b=4.0667(9) Å, c=10.778(2) Å, Z=6. The structure is layered and is built up from corner and edge sharing [(Sb,Te)O4E] trigonal bipyramids that have the lone pair (E) directed towards one of the equatorial positions, those groups build up [(Sb,Te)2O3E2+]n layers. The copper and the chlorine atoms are located in between those layers. There are two different Cu positions. The [Cu1Cl4] group is a slightly distorted tetrahedron and these tetrahedra make up chains by corner sharing. The electron density for the half occupied Cu2 atom is spread out in the structure like a worm that run along the b-axis in the space in between two chains of [Cu1Cl4] tetrahedrons. Analysis of the diamagnetic response in magnetic susceptibility measurements is in perfect agreement with a Cu+ valence. Conductivity measurements in the temperature range 355–590 K gives an activation energy of 0.55 eV. The delocalised Cu2 position in the structure suggests that the compound is a Cu+ ionic conductor along the b-axis.  相似文献   

19.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

20.
The organo-templated iron(III) borophosphate (C3H12N2)FeIII 6(H2O)4[B4P8O32(OH)8] was prepared under mild hydrothermal conditions (at 443 K) and the crystal structure was determined from single crystal X-ray data at 295 K (monoclinic, P21/c (No. 14), a=5.014(2) Å, b=9.309(2) Å, c=20.923(7) Å, β=110.29(2)°, V=915.9(5) Å3, Z=2, R1=0.049, wR2=0.107 for all data, 2234 observed reflections with I>2σ(I)). The title compound contains a complex inorganic framework of borophosphate trimers [BP2O8(OH)2]5− together with FeO4(OH)(H2O)- and FeO4(OH)2-octahedra forming channels with ten-membered ring apertures in which the diaminopropane cations are located. The magnetization measurements confirm the Fe(III)-state and show an antiferromagnetic ordering at TN≈14.0(1) K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号