首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Five new analogues of the β-CeNiSb3 family have been synthesized and found to be LnNi(Sn,Sb)3 and isostructural to the previously reported β-CeNiSb3. LnNi(Sn,Sb)3 (Ln=Pr, Nd, Sm, Gd, or Tb) crystallizes in the orthorhombic space group, Pbcm, with lattice parameters of a∼12.9 Å, b∼6.1 Å, c∼12.0 Å. The structure consists of layers of nearly square nets of X (X=Sn/Sb) atoms and highly distorted NiX6 octahedra. Lanthanide atoms are located between layers of X and NiX6 octahedra. All analogues are metallic and experimental effective magnetic moments are in agreement with the respective Ln3+ calculated moments.  相似文献   

2.
The new compound K2CuSbS3 has been synthesized by the reaction of K2S, Cu, Sb, and S at 823 K. The compound crystallizes in the Na2CuSbS3 structure type with four formula units in space group P21/c of the monoclinic system in a cell at 153 K of a=6.2712 (6) Å, b=17.947 (2) Å, c=7.4901 (8) Å, β=120.573 (1)°, and V=725.81 (12) Å3. The structure contains two-dimensional layers separated by K atoms. Each layer is built from CuS3 and SbS3 units. Each Cu atom is pyramidally coordinated to three S atoms with the Cu atom about 0.4 Å above the plane of the S atoms. Each Sb atom is similarly coordinated to three S atoms but is about 1.1 Å above its S3 plane. First-principles calculations indicate an indirect band gap of 1.9 eV. These calculations also indicate that there is a bonding interaction between the Cu and Sb atoms. An optical absorption measurement performed with light perpendicular to the (0 1 0) crystal face of a red block-shaped crystal of K2CuSbS3 indicates an experimental indirect band gap of 2.2 eV.  相似文献   

3.
The high-pressure behavior of Li2CO3 is studied up to 25 GPa with synchrotron angle-dispersive powder X-ray diffraction in diamond anvil cells and synthesis using a multi-anvil apparatus. A new non-quenchable hexagonal polymorph (P63/mcm, Z=2) occurs above 10 GPa with carbonate groups in a staggered configuration along the c-axis—a=4.4568(2) Å and c=5.1254(6) Å at 10 GPa. Two columns of face-shared distorted octahedra around the Li atoms are linked through octahedral edges. The oxygen atoms are coordinated to one carbon atom and four lithium atoms to form a distorted square pyramid. Splittings of X-ray reflections for the new polymorph observed above about 22 GPa under non-hydrostatic conditions arise from orthorhombic or monoclinic distortions of the hexagonal lattice. The results of this study are discussed in relation to the structural features found in other Me2CO3 carbonates (Me: Na, K, Rb, Cs) at atmospheric conditions.  相似文献   

4.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

5.
Two isotypic layered rare-earth borate phosphates, K3Ln[OB(OH)2]2[HOPO3]2 (Ln=Yb, Lu), were synthesized hydrothermally and the crystal structures were determined by single-crystal X-ray diffraction (R3?, Z=3, Yb: a=5.6809(2) Å, c=36.594(5) Å, V=1022.8(2) Å3, Lu: a=5.6668(2) Å, c=36.692(2) Å, V=1020.4(1) Å3). The crystal structure can be described in terms of stacking of Glaserite-type slabs consisting of LnO6 octahedra interlinked by phosphate tetrahedra and additional layers of [OB(OH)2]- separated by K+ ions. Field and temperature dependent measurements of the magnetic susceptibility of the Yb-compound revealed Curie-Weiss paramagnetic behavior above 120 K (μeff=4.7 μB). Magnetic ordering was not observed down to 1.8 K.  相似文献   

6.
The compound Cs2Hg2USe5 was obtained from the solid-state reaction of U, HgSe, Cs2Se3, Se, and CsI at 1123 K. This material crystallizes in a new structure type in space group P2/n of the monoclinic system with a cell of dimensions a=10.276(6) Å, b=4.299(2) Å, c=15.432(9) Å, β=101.857(6) Å, and V=667.2(6) Å3. The structure contains layers separated by Cs atoms. Within the layers are distorted HgSe4 tetrahedra and regular USe6 octahedra. In the temperature range of 25-300 K Cs2Hg2USe5 displays Curie-Weiss paramagnetism with μeff=3.71(2) μB. The compound exhibits semiconducting behavior in the [010] direction; the conductivity at 298 K is 3×10−3 S/cm. Formal oxidation states of Cs/Hg/U/Se may be assigned as +1/+2/+4/− 2, respectively.  相似文献   

7.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

8.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

9.
The compound CeAu0.28Ge1.72 crystallizes in the ThSi2 structure type in the tetragonal space group I41/amd with lattice parameters a=b=4.2415(6) Å c=14.640(3) Å. CeAu0.28Ge1.72 is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at ∼8 K with estimated magnetic moment of 2.48 μB/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at ∼8 K. The electronic specific heat coefficient (γ) value obtained from the paramagnetic temperature range 15-25 K is∼124(5) mJ/ mol K2. The entropy change due to the ferromagnetic transition is ∼4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions.  相似文献   

10.
The RE3Ga9Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850°C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce3Ga9Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) Å; b=10.836(3) Å; and c=11.545(3) Å; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) Å; b=23.090(7) Å; and c=10.836(3) Å. The refinement based on the full-matrix least squares on Fo2[I>2σ(I)] converged to final residuals R1/wR2=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants Θ=−49(1) and−7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at TN=26.1 K. The μeff obtained for both analogs is close to the RE3+ free-ion value.  相似文献   

11.
A new phase, Li4VO(PO4)2 was synthesized by a lithium ion exchange reaction from protonic phase, VO(H2PO4)2. The structure was determined from neutron and synchrotron powder diffraction data. The exchange of lithium causes a stress, leading to a change in the dimensionality of the structure from 3D to 2D by the displacement of oxygen atoms. Thus, Li4VO(PO4)2 crystallizes in P4/n space group with lattice parameters a=8.8204(1) Å and c=8.7614(2) Å. It consists of double layers [V2P4O18] formed by successive chains of VO6 octahedra and VO5 pyramids with isolated PO4 tetrahedra. The lithium ions located in between the layers promote mobility. Furthermore, the ionic conductivity of 10−4 S/cm at 550 °C for Li4VO(PO4)2 confirms the mobility of lithium ions in the layers. On the other hand, VO(H2PO4)2 exhibits a conductivity of 10−4 S/cm at room temperature due to the presence of protons in tunnels.  相似文献   

12.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

13.
A new iron phosphate (NH4)4Fe3(OH)2F2[H3(PO4)4] has been synthesized hydrothermally at HF concentrations from 0.5 to 1.2 mL. Single-crystal X-ray diffraction analysis reveals its three-dimensional open-framework structure (monoclinic, space group P21/n (No. 14), a=6.2614(13) Å, b=9.844(2) Å, c=14.271(3) Å, β=92.11(1)°, V=879.0(3) Å3). This structure is built from isolated linear trimers of corner-sharing Fe(III) octahedra, which are linked by (PO4) groups to form ten-membered-ring channels along [1 0 0]. This isolated, linear trimer of corner-sharing Fe(III) octahedra, [(FeO4)3(OH)2F2], is new and adds to the diverse linkages of Fe polyhedra as secondary building units in iron phosphates. The trivalent iron at octahedral sites for the title compound has been confirmed by synchrotron Fe K-edge XANES spectra and magnetic measurements. Magnetic measurements also show that this compound exhibit a strong antiferromagnetic exchange below TN=17 K, consistent with superexchange interactions expected for the linear trimer of ferric octahedra with the Fe-F-Fe angle of 132.5°.  相似文献   

14.
The room-temperature crystal structure of a new Cu(II) oxyphosphate—α Cu0.50IITiO(PO4)—was determined from X-ray single crystals diffraction data, in the monoclinic system, space group P21/c. The refinement from 5561 independent reflections lead to the following parameters: a=7.5612(4)Å, b=7.0919(4)Å, c=7.4874(4)Å, β=122.25(1)°, Z=4, with the final R=0.0198, wR=0.0510. The structure of α Cu0.50IITiO(PO4) can be described as a TiOPO4 framework constituted by chains of tilted corner-sharing [TiO6] octahedra running parallel to the c-axis and cross linked by phosphate [PO4] tetrahedra, where one-half of octahedral cavities created are occupied by Cu atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.308 Å) and short (1.722 Å) Ti-O(1) bonds along chains. Such O(1) atoms not linked to P atoms justify the oxyphosphate formulation α Cu0.50TiO(PO4). The divalent cations Cu2+ occupy a Jahn-Teller distorted octahedron sharing two faces with two [TiO6] octahedra. EPR and optical measurements are in good agreement with structural data. The X-ray diffraction results are supported by Raman and infrared spectroscopy studies that confirmed the existence of the infinite chains -Ti-O-Ti-O-Ti-. α Cu0.50TiO(PO4) shows a Curie-Weiss paramagnetic behavior in the temperature range 4-80 K.  相似文献   

15.
An organic charge-transfer (CT) salt (BEDT-TTF)3(MnCl3)2(C2H5OH)2 has been synthesized by a standard electrochemical method. The crystal data are monoclinic, C2/c (#15), a=38.863(4)Å, b=6.716(1) Å, c=23.608(3) Å, β=115.007(3)°, V=5584(1) Å3, and Z=4. The structure consists of one-dimensional (1D) infinite {[MnCl3]} magnetic chains and two-dimensional (2D) organic conduction pathways. The former consists of face-sharing octahedra of manganese chloride complex ions, and dominates the magnetic properties of this compound. Such a feature of the crystal structure closely relates to transition metal hexagonal perovskite compounds, all of which are known for frustrated triangular lattices comprised of weakly interacting 1D magnetic chains. The new compound exhibits a high conductivity down to 4 K.  相似文献   

16.
Two succinato-pillared coordination polymers Mn5(OH)2L41 and Cd3(OH)2L22 were prepared by hydrothermal reactions of succinic acid (H2LHOOC(CH2)2COOH) and KOH with the corresponding metal chlorides at 180°C. Within 1, the adjacent MnO6 octahedra are edge shared to generate Mn5O22 pentamers, which are interconnected to form 2D manganese oxide layers stabilized by the intralayer gauche succinato groups within the aperture. The manganese oxide layers are pillared by the interlayer trans succinato groups to complete 3D framework. The magnetic behavior of 1 obeys Curie-Weiss law χm(TΘ)=4.46(2) cm3 mol−1 K with the Weiss constant Θ=−67.3(3) K over the temperature range 5−300 K. Compound 2 contains CdO6 octahedra and edge-shared Cd2O10 bi-octahedra. The former CdO6 octahedra are each surrounded by four Cd2O10 bi-octahedra which in turn are each surrounded by four former CdO6 octahedra and four neighboring Cd2O10 bi-octahedra, thus resulting in the corrugated cadmium oxide layers. The formed 2D layers are pillared by trans succinato groups to constitute 3D coordination polymer. Additionally, thermal decomposition of both title coordination polymers upon heating in a flowing nitrogen atmosphere from room temperature to 800°C is discussed. Crystal data: (1) monoclinic, P21/c, Z=2, a=9.575(2) Å, b=9.611(2) Å, c=12.526(3) Å, β=97.04(2)°, V=1144.0(4) Å3, R1=0.0289 and wR2=0.0815 for 2411 observed reflections (I?2σ(I)) out of 2629 unique reflections; (2) orthorhombic, Pbca, Z=4, a=10.679(1) Å, b=6.873(1) Å, c=16.996(2) Å, V=1247.5(3) Å3, R1=0.0234 and wR2=0.0585 for 1213 observed reflections (I?2σ(I)) out of 1437 unique reflections.  相似文献   

17.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

18.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

19.
Powder samples and single crystals of the ternary oxide Ce3MoO7 were obtained by solid state reaction. The structure was determined by single-crystal X-ray diffraction. Ce3MoO7 crystallizes in the orthorhombic space group P212121 (no. 19) with unit-cell parameters a=7.5395(2) Å, b=7.6769(1) Å, c=10.9769(2) Å and Z=4. Full-matrix least-squares refinement on F2 using 3903 independent reflections for 101 refinable parameters results in R1=0.0281 and wR2=0.0473. The structure consists of chains of corner-linked MoO6 octahedra running parallel to the b-axis and separated from each other by seven- or eight-coordinate Ce-O polyhedra. The trend of the unit-cell parameters of the Ln3MoO7 series, plotted versus the R3+ ionic radius, shows a linear behavior, which strongly suggests a trivalent state for the Ce atoms. Magnetic susceptibility measurements confirm that the oxidation state of the Ce atoms is +3. Resistivity measurements on a single crystal show that the Ce3MoO7 compound is a semi-conductor with a band gap of about 2 eV.  相似文献   

20.
Na2Ni(HPO3)2, obtained as light yellow-green crystals under mild hydrothermal conditions, crystallizes in the orthorhombic Pnma space-group with lattice parameters: a=11.9886(3), b=5.3671(2), c=9.0764(3) Å, V=584.01 Å3, Z=4. The structure consists of zig-zag chains of NiO6 octahedra bridged by two HPO32− and the chains are further connected through HPO32− to four nearest chains to form a three dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The Na cations reside in the irregular Na(1)O5, Na-O of 2.276-2.745 Å, and Na(2)O9, Na-O of 2.342-2.376 Å, environments. The presence of the phosphite monoanion has been further confirmed by IR spectroscopy. Due to the 3D framework of Ni connected by O-P-O bridges, the magnetic susceptibility behaves as a paramagnet above 100 K (C=1.49(2) emu K mol−1, μeff=3.45 μB, Θ=−39(2) K) and below 6 K, it orders antiferromagnetically as confirmed the sharp drop and the non-Brillouin behavior of the isothermal magnetization at 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号