首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the phase transition at 115 K in the fresnoite-type compound K2V3O8, we undertook temperature-dependent neutron powder diffraction and single-crystal X-ray diffraction (XRD). For structure refinements in the nominal space group P4bm, the most dramatic change is evidenced by the a cell edge, which initially expands on cooling, then abruptly begins to contract at 115 K. The c cell edge contracts monotonically. The atomic displacement parameters (ADPs) also deviate from their expected temperature dependence at 115 K, where the oxygen atoms in the vanadium oxide plane exhibit an increase in apparent positional disorder. Similar changes in lattice parameters and ADPs are observed from the single-crystal XRD refinements. Below 115 K, weak superlattice reflections are clearly evident in XRD patterns recorded by a CCD detector, and these extra reflections can be indexed with the wave vector ±1/3〈110〉*+1/2c*. Possible space groups for the modulated structure are P42bc and P4nc.  相似文献   

2.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

3.
Hydrothermal synthesis in the M/Mo/O (M=Co,Ni) system was investigated. Novel transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni), having an interesting pillared layer structure, were found. The molybdates crystallize in the triclinic system with space group P−1, Z=1 with unit cell parameters of a=5.525(3) Å, b=7.058(4) Å, c=7.551(5) Å, α=90.019(10)°, β=105.230(10)°, γ=90.286(10)° for CoMo4O13·2H2O, and a=5.508(2) Å, b=7.017(3) Å, c=7.533(3) Å, α=90.152(6)°, β=105.216(6)°, γ=90.161(6)° for NiMo4O13·2H2O The structure is composed of two-dimensional molybdenum-oxide (2D Mo-O) sheets pillared with CoO6 octahedra. The 2D Mo-O sheet is made up of infinite straight ribbons built up by corner-sharing of four molybdenum octahedra (two MoO6 and two MoO5OH2) sharing edges. These infinite ribbons are similar to the straight ones in triclinic-K2Mo4O13 having 1D chain structure, but are linked one after another by corner-sharing to form a 2D sheet structure, like the twisted ribbons in BaMo4O13·2H2O (or in orthorhombic-K2Mo4O13) are.  相似文献   

4.
The formation ofβ-phase Bi2Mo2O9 catalyst from a precursor precipitate has been studied using thein situ combined XRD/QuEXAFS technique and DSC during calcination. Accordingly the precursor was observed to undergo a number of changes in both the molybdenum (VI) coordination and long-range ordering during this heating. Initially the two other forms of bismuth molybdate (α-andγ-phases) were observed to form from the poorly crystalline precursor at about 230°C, however, theβ-phase eventually crystallised after prolonged heating at 560°C. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

5.
利用高温固相反应、离子交换、层间插入反应和硫化处理制备了PbS插层的K2Ti4O9催化剂。利用XRD、TEM、SEM、XRF、PL和紫外-可见漫反射光谱对催化剂进行了表征,考察了催化剂紫外光和可见光光催化制氢活性。结果表明,制备的PbS插层K2Ti4O9催化剂对可见光的吸收范围较宽,其吸收边界约为710 nm,在紫外光和可见光下3 h累积产氢量可达到115.46 mmol.gcat-1和0.92 mmol.gcat-1,与CdS插层K2Ti4O9催化剂相比具有更高的催化活性。  相似文献   

6.
In this study, sub-microsized CoFe2O4 octahedra with a high yield are synthesized via a simple hydrothermal route under mild conditions. The as-prepared products are characterized by conventional techniques of XRD, SEM, TEM, ED and HR-TEM. The results show that the as-synthesized sample exhibits octahedral morphology with a narrow size distribution. The edge size of CoFe2O4 octahedra is estimated to be about 0.10-0.14 μm. The growth process is also monitored by time and temperature-dependent observation. It is found that the reaction temperature has no obvious influence on the product morphology but a significant effect on the size of CoFe2O4 octahedra, while the reaction time determines the final morphology of the product. Moreover, it is displayed that the citrate ions play a key role in the formation of CoFe2O4 octahedra. Furthermore, the possible growth mechanism of the sub-microsized CoFe2O4 octahedra is discussed on the basis of a series of experiments. Magnetic measurements show that sub-micro-sized CoFe2O4 octahedra exhibit obvious ferromagnetic behaviors. The saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) are determined to be 85.8, 29.2 emu/g and 892 Oe, respectively.  相似文献   

7.
Through controlling the amount of NaOH added, BiOBr and Bi2O3 with different shapes were hydrothermally synthesized in the reaction system of Bi(NO3)3-hexadecyl trimethyl ammonium bromide (CTAB)-NaOH. As 8 mmol of NaOH was added, BiOBr microflowers constructed of nanoflakes were synthesized. The thickness of these single-crystal nanoflakes was about 20 nm. In the similar condition, when the amount of NaOH added was 28 mmol, Bi2O3 shuttles with concave surfaces were obtained. The length of these shuttles was 100 μm and the diameter at the middle of these shuttles was 50 μm. The photocatalytic activity of as-prepared BiOBr microflowers was evaluated by the degradation of methyl orange (MO) under visible-light irradiation (λ>420 nm), which was up to 96% within 90 min.  相似文献   

8.
The crystal structures of K2S2O7, KNaS2O7 and Na2S2O7 have been solved and/or refined from X-ray synchrotron powder diffraction data and conventional single-crystal data. K2S2O7: From powder diffraction data, monoclinic C2/c, Z=4, a=12.3653(2), b=7.3122(1), , β=93.0792(7)°, RBragg=0.096. KNaS2O7: From powder diffraction data; triclinic , Z=2, a=5.90476(9), b=7.2008(1), , α=101.7074(9), β=90.6960(7), γ=94.2403(9)°, RBragg=0.075. Na2S2O7: From single-crystal data; triclinic , Z=2, a=6.7702(9), b=6.7975(10), , α=116.779(2), β=96.089(3), γ=84.000(3)°, RF=0.033. The disulphate anions are essentially eclipsed. All three structures can be described as dichromate-like, where the alkali cations coordinate oxygens of the isolated disulphate groups in three-dimensional networks. The K-O and Na-O coordinations were determined from electron density topology and coordination geometry. The three structures have a cation-disulphate chain in common. In K2S2O7 and Na2S2O7 the neighbouring chains are antiparallel, while in KNaS2O7 the chains are parallel. The differences between the K2S2O7 and Na2S2O7 structures, with double-, respectively single-sided chain connections and straight, respectively, corrugated structural layers can be understood in terms of the differences in size and coordinating ability of the cations.  相似文献   

9.
Yttrium molybdate (Y2Mo3O12) has been prepared by non-hydrolytic sol–gel chemistry. The phase evolution upon heating was investigated using in situ and ex situ heat treatments combined with powder X-ray diffraction. This method has led to the isolation of two orthorhombic phases with different atomic connectivity. Yttrium adopts 6- and 7-coordinate sites in the Pbcn and Pba2 structures, respectively. Cocrystallization of both phases was observed in a narrow temperature range, suggesting that crystallization kinetics play a major role in phase formation. It was found that the Pba2 phase is the stable polymorph below 550 °C, and converts to Pbcn at higher temperatures.  相似文献   

10.
The structure of a series of new ionic conductors based in lanthanum molybdate (La2Mo2O9) has been investigated using transmission electron microscopy (TEM), high-resolution X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The superstructure 2ac×3ac×4ac of the low temperature α-polymorph relative to the β-polymorph was confirmed by HRTEM imaging and electron diffraction. Furthermore, the effects of partial cation substitution in the La2−xNdxMo2O9 and La2Mo2−yWyO9 series have been also evaluated in the search of new clues to understand the structure and stabilisation of the high temperature and better conductor β-polymorph. The thermal analysis studies show that Nd-substitution does not stabilise completely the β-polymorph at room temperature, although no superstructure ordering was observed by both XRD and HRTEM. On the other hand, W-substitution stabilises the cubic β-polymorph for y>0.25, although, electron diffraction indicates a slight distortion from the cubic symmetry for low W-content. This distortion disappears as the W content increases and the Rietveld refinements gradually render better results.  相似文献   

11.
The complex oxide Na3Fe2Mo5O16 has been synthesized, and its crystal structure was determined by single-crystal X-ray diffraction (space group (SG) P-3m1; a=5.7366(6) Å, c=22.038(3) Å; Z=2). The compound can be considered as a new structure type containing Mo3O13 cluster units, which can be derived from the Na2In2Mo5O16 structure model by doubling of the cell along the c-axis. Na3Fe2Mo5O16 crystallizes in centrosymmetric SG (P-3m1) and the positions of the sodium atoms are fully occupied in contrast to the proposed Na2In2Mo5O16 model SG (P3m1). Magnetic properties of Na3Fe2Mo5O16 were studied by superconducting quantum interference device measurements, revealing antiferromagnetic ordering below max=10(1) K. Thermal stability in air was investigated by in situ high-temperature X-ray powder diffraction. Structural relationships to Na2In2Mo5O16 and NaFe(MoO4)2 are discussed.  相似文献   

12.
A new potassium bismuth phosphate-molybdate K2Bi(PO4)(MoO4) has been synthesized by the flux method and characterized by single-crystal and powder X-ray diffraction, IR spectroscopic studies. The compound crystallizes in the orthorhombic system with the space group Ibca and the cell parameters: a=19.7037(10), b=12.4752(10), c=7.0261(10). This phase exhibits an original layered structure, in which the [Bi(PO4)(MoO4)] layers consist of [Bi2Mo2O18] chains linked through single PO4 tetrahedra. The K+ cations interleaved between these layers exhibit a monocapped distorted cubic coordination.  相似文献   

13.
Differential thermal analysis coupled to temperature-controlled diffraction have given evidence of a topological metastability phenomenon in an extended compositional range of the La2−xNdxMo2O9 solid solution. A metastable-stable phase diagram is proposed for this series of LAMOX-type fast oxide-ion conductors. In the Nd range 0<x?0.35, a freezing of the oxygen/vacancy disorder of the β-phase at ambient temperature can be achieved through a splat-quenching to water-ice mixture or/and shaping/sintering into pellet. In the intermediate 0.4?x?1.2 range, the amount of β-metastable phase grows upon substitution for powders. The negative impact of β-metastable to α phase transition on conductivity tends to disappear through the partial stabilization of the β phase by shaping/sintering.  相似文献   

14.
MgAl2O4 spinel doping into cathode materials LiMn2O4 was used to improve the cyclic performance of the cathode. X-ray analysis results showed, when MgAl2O4 precursors were mixed with LiMn2O4 and sintered at 770 ℃ for 12 hour, MgAl2O4-LiMn2O4 mulriple spinel with the same physical characteristics as pure LiMn2O4 were synthesized. The electro-chemical performance testing showed, comparing with pure LiMn2O4, the first charge-discharge capacity of doping materials somewhat reduced, but the cyclic performance improved. The mechanism for doping material was also discussed.  相似文献   

15.
采用固相法首次合成了氧离子导体La2Mo1.9Sc0.1O9陶瓷样品,进行了XRD、SEM表征,用交流阻抗谱、氧浓差电池等电化学方法研究了样品在450~850℃下的离子导电性。结果表明,该陶瓷样品具有立方相La2Mo2O9结构,掺杂5%的Sc3+能有效地抑制La2Mo2O9在大约580℃时的相变;在氧化性气氛中是纯的氧离子导体,而在还原性气氛中为氧离子与电子的混合导体,850℃时的氧离子电导率为0.04S·cm-1。  相似文献   

16.
The structure of Cu2Fe2Ge4O13, previously thought to be CuFeGe2O6, has been determined from single-crystal X-ray diffraction data to be monoclinic, P21/m, a=12.1050(6), b=8.5073(4), c=4.8736(2) Å, β=96.145(1)°, Z=2, with R1=0.0231 and wR2=0.0605. The unique structure has an oligomer of four germanate tetrahedra, cross-linked laterally by square-planar copper ions, joined end-to-end by a zigzag chain of edge-sharing iron oxide octahedra. Running along the a-direction the metal oxide chain consists of alternating Cu-Cu and Fe-Fe dimers. A hypothetical series of homologous structures (Cun−2Fe2GenO3n+1 with n=3,4,…,∞) with different length germanate oligomers is proposed, where as n increases, the infinite chain of the CuGeO3 is approached. In this context, Cu2Fe2Ge4O13 is viewed as being built from blocks of CuGeO3 and the Fe oxide chains. This material has significance to the study of low-dimensional mixed-spin systems.  相似文献   

17.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

18.
Main features of the formation of porous composites by hydrothermal treatment of powdered aluminium were studied by scanning electron microscopy, TEM, XPD, IR spectroscopy of lattice modes, and thermal analysis. Hydrothermal oxidation of aluminium was shown to proceedvia generation and subsequent oriented growth of well-crystallized boehmite platelets, whose subsequent dehydration yields γ-alumina. Relation between the degree of the metal oxidation and specific surface area/crushing strength of the composites was analyzed.  相似文献   

19.
We have investigated the continuous hydrothermal synthesis and crystallization of spinel CoFe2O4 via the reaction of ferric nitrate and cobalt nitrate with sodium hydroxide. The reaction was carried out in water at temperatures ranging from 475 to 675 K and pressures of 25 MPa. The relative solubility of the precipitating cations was found to play a critical role in attaining the correct product. It was found necessary to control pH and temperature in order to prevent premature precipitation of iron in the reactor. Two variations of the continuous hydrothermal technique were examined—cold mixing and hot mixing. The cold mixing experiments produced a product with less impurity than the hot mixing experiments. Furthermore, the cold mixing configuration was successful in producing uniform nanoparticles of CoFe2O4. A mechanism of particle formation was postulated involving the precipitation of metal hydroxides at ambient conditions, dissolution of the hydroxides as temperature is increased followed by rapid precipitation of metal oxides at elevated temperatures. The hot mixing experiments, on the other hand, simply involve the precipitation of metal oxides due to the addition of the hot hydroxide solution. In both cases, very fine particles of CoFe2O4 are produced in the range of the processing conditions investigated.  相似文献   

20.
The sol-gel combustion synthesis (SGCS) for oxygen carrier (OC) to be used in chemical looping combustion (CLC) was first designed and experimented in this work, which is a new method of OC synthesis by combining sol-gel technique and solution combustion synthesis. Cheap hydrated metal nitrates and urea were adopted as precursors to prepare Fe2O3/Al2O3 OC at the molar ratio to unity (Fe1Al1), which was characterized through various means, including Fourier transforms infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffractor (XRD), and N2 isothermal adsorption/desorption method. FTIR analysis on the chemical structure of the dried gel of Fe1Al1 indicated that urea was partly hydrolyzed and the hydrated basic carbonate was formed by the combination of groups such as (Fe(1−yAly)1−xO1−3x, CO32− and -OH-. By analyzing the staged products during SGCS, calcination was found as a necessary step to produce Fe2O3/Al2O3 OC with separate phases of α-Fe2O3 and α-Al2O3. Through TGA-DTA, the decomposition of the dried gel was found to undergo five stages. The analysis of the evolved gases from the gel decomposition using FTIR partially confirmed the staged decomposition and assisted a better understanding of the mechanism of SGCS. XRD identification further substantiated the necessity of calcination to synthesize Fe2O3/Al2O3 OC with separate phases of α-Fe2O3 and α-Al2O3, though it was not necessary for the synthesis of single phase α-Fe2O3 and α-Al2O3. Structural characterization performed on N2 adsorption analyzer displayed that the pore shape of Fe1Al1 particles was heterogeneous. Finally, H2 temperature-programmed reduction (TPR) of Fe1Al1 products in TGA indicated that the reduction reaction of Fe1Al1 OC after calcination was a single step reaction from α-Fe2O3 to Fe, and calcination benefited to improve the transfer rate of the lattice oxygen from the OC to fuel H2. Furthermore, four times of reduction and oxidization (redox) reaction by alternating with H2 and air demonstrated the synthesized OC had good reactivity and sintering-resistance, much suitable to be used in the realistic CLC. Overall, the SGCS method was found superior to other existent methods to prepare Fe2O3/Al2O3 OC for CLC application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号