首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical properties of as-deposited and annealed thin films composed of three-dimensional arrays of sphalerite-type ZnSe and CdSe quantum dots (QDs), synthesized by chemical deposition, were investigated. Neglecting the S-D mixing of hole states, the lowest “band to band” transitions in very small nanoclusters and in bulk-like clusters may be assigned as 1S→1S and 1SΔ→1S, and are split by spin-orbit (SO) splitting energy of the bulk material—Δ. The splitting energy between these transitions was found to be insensitive to QD size variations, which could be explained assuming that 1S hole states arising from valence band Γ7 and Γ8 components do not mix with higher angular momentum states and shift together to higher energies coupled via the isotropic hole mass. This implies significant difference between the SO splitting energies in the two semiconductors. Accounting for S-D mixing of hole states, the observed transitions may be attributed to the fundamental ground state—(1S3/2, 1Se) and the ground state—(1S1/2, 1Se) ones. The observed “splittings” thus do not correspond exactly to SO splitting energy in both semiconductors, but are complex functions of it, as exact position of each hole energy level depends, besides on Δ, also on other material-characteristic parameters.  相似文献   

2.
Cadmium selenide quantum dots with cubic crystal structure are chemically deposited in thin film form using selenosulfate as a precursor for selenide ions and ammonia buffer with double role: as a ligand and as a pH value controller. The optical band gap energies of as-deposited and thermally treated cadmium selenide thin films, calculated within the framework of parabolic approximation for the dispersion relation, on the basis of equations which arise from the Fermi's golden rule for electronic transitions from valence to conduction band, are 2.08 and 1.77 eV, correspondingly. The blue shift of band gap energy of 0.34 eV for as-deposited thin films with respect to the bulk value is due to the quantum size effects (i.e., nanocrystals behave as quantum dots) and this finding is in agreement with the theoretical predictions. During the thermal treatment the nanocrystals are sintered, the increase of crystal size being in correlation with the decrease of band gap energy. The annealed thin films are practically non-quantized. From the resistance-temperature measurements, on the basis of the dependence of ln(R/Ω) vs 1/T in the region of intrinsic conduction, the thermal band gap energy (at 0 K) of 1.85 eV was calculated.  相似文献   

3.
This review summarized the green approaches toward colloidal chemical synthesis for metal selenide and telluride quantum dots.  相似文献   

4.
Electrical and photoelectrical properties of cubic CdSe nanocrystals in thin film form (including the relaxation dynamics of photocarriers) are investigated. Photoelectrical properties of the obtained films are controlled by chemical (varying the reagent concentration in the reaction system) and physical means (controlling the crystal dimensions). In the case of thin films with optimal photoelectrical properties, the calculated band gap energy and ionization energies of impurity levels (on the basis of experimentally obtained temperature dependence of dark electrical resistance) at 0 K are 1.85, 0.74 and 0.43 eV, correspondingly. The calculated optical band gap energy (on the basis of spectral dependence of photoconductivity) at room temperature of 1.75 eV is in excellent agreement with the value of 1.77 eV which is obtained on the basis of electronic absorption spectrum in the framework of parabolic approximation for dispersion relation. Upon thermal treatment of chemically deposited thin films of cubic CdSe quantum dots, as a result of processes of coalescence and crystal growth, the electronic contact between nanocrystals increases and the confinement effects irreversibly disappear. Relaxation of non-equilibrium charge carriers is practically carried out according to the linear mechanism. The calculated relaxation time of photoexcited charge carriers is 0.4 ms.  相似文献   

5.
Fluorescence resonance energy transfer (FRET) studies were carried out with quantum dots capped with thioglycolic acid (TGA) and 2-mercaptoethanol (2-ME) and negatively charged phthalocyanines {Zn tetracarboxy (ZnTCPc), Zn octacarboxy (ZnOCPc) and Zn tetrasulfo (ZnTSPc) phthalocyinines} in a 0.1 NaOH:EtOH (50:50) solvent mixture. The best overlap between emission spectra of the donor (QDs) and the absorption spectra of the acceptor (ZnPc derivatives) was observed for TGA capped QDs, very little overlap was obtained for 2-ME QDs. ZnTSPc gave the highest FRET efficiency (0.3), with ZnOCPc and ZnTCPc giving a FRET efficiency of 0.2. The ΦT values of the MPcs generally decreased in the presence of the QD whereas the triplet lifetimes (τT) of the ZnPc derivatives were higher in the presence of QDs.  相似文献   

6.
Electrical and photoelectrical properties (including both the stationary photoresponse and the photocarriers' relaxation dynamics) of nanocrystalline semiconducting bismuth(III) sulfide thin films were investigated. The experimental design of photoelectrical properties was achieved by controlling the chemistry of the deposition process (varying the reagent concentration in the reaction system) and also by physical means (controlling the crystal dimensions by post-deposition annealing). The band gap energy of thin films characterized by most pronounced photoelectrical properties was calculated, on the basis of measured photoconductivity spectral response curves, by several approaches. All of the obtained values are in very good agreement with the corresponding ones obtained from optical spectroscopy data within the framework of parabolic approximation for dispersion relation. On the basis of measured temperature dependence of dark electrical resistivity of nanocrystalline bismuth(III) sulfide films, the thermal band gap energy and the ionization energy of the impurity level (of donor type) were calculated. The corresponding values are 1.50 and 0.42 eV. Dynamics of non-equilibrium charge carriers' relaxation processes was studied with the oscilloscopic method. By analysis of the photoconductivity decay kinetics data it is found that recombination of non-equilibrium charge carriers is carried out according to the linear mechanism. The calculated relaxation time of photoexcited charge carriers is 1.58 ms, the relaxation processes occurring via local trapping centers. Recombination processes occurring via a single-type trapping center can be described within the framework of the Schockley-Read model. The practically linear regime detected in the measured lux-ampere characteristics of the studied films (ΔσΦ0.98) indicate as well a linear recombination mechanism of the photoexcited charge carriers.  相似文献   

7.
We demonstrate the organization of nearly monodisperse colloidal InP quantum dots at the air/water interface in Langmuir monolayers. The organization of the particles is monitored in situ by surface pressure-surface area measurements and ex situ by AFM measurements on films transferred to mica by Langmuir-Blodgett deposition. The influence of different ligands on the quality of the monolayer formed has been studied. We show that densely packed monolayers with little holes can be formed using short chain ligands like pyridine and pentamethylene sulfide. The advantage of using short chain ligands for electron tunneling to or from the quantum dots is demonstrated using scanning tunneling spectroscopy.  相似文献   

8.
A systematic approach and a new scheme for the evaluation of the as–is encapsulation of CdSe/ZnS core/shell quantum dots into polymer matrices is proposed, aiming to the implementation of thin film photonic integrated structures. Work focuses on quantum dots capped by hexadecylamine and trioctylphosphine oxide with no ligand exchange or other intermediate processing steps involved. The polymers studied include poly(methyl–methacrylate) (PMMA), polystyrene and acrylic polymers incorporating long alkyl chains, which are expected to promote the compatibility of the quantum dot ligands to that of the polymer chains. In this approach, the variation of photoluminescence properties of the nanocomposite thin films is measured versus increased concentration of the quantum dots, so as to evaluate the suitability of each polymer structure as an efficient host. Furthermore, the refractive index of the quantum dots/polymer nanocomposite thin films are also estimated using white light reflectance spectroscopy data, as appropriate for the integration of photonic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 552–560  相似文献   

9.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

10.
Different compositions of amorphous Ge15Se85-xCux thin films were deposited onto glass substrates by the thermal evaporation technique. Their amorphous structural characteristics were studied by X-ray diffraction (XRD). The optical constants (n, k) of amorphous Ge15Se85-xCux thin films were obtained by fitting the ellipsometric parameters (ψ and Δ) data for the first time using three layers model system in the wavelength range 300–1100 nm. It was found that the refractive index, n, increases with the increase of Cu content. The possible optical transition in these films is found to be indirect transitions. The optical energy gap decreases linearly from 1.83 to 1.44 eV with increasing the Cu. The experimental transmittances spectrum can be simulated using the thickness and optical constants modeled by spectroscopic ellipsometry model.  相似文献   

11.
Yang F  Ma Q  Yu W  Su X 《Talanta》2011,84(2):411-415
A novel direct quantificational method through naked-eye colorimetric analysis of Hg2+ was constructed based on different degree of the fluorescence quenching of bi-color quantum dots (QDs) multilayer films (2-QDMF). The functional multilayer films were assembled by layer-by-layer (LBL) deposition of oppositely charged CdTe QDs and poly(dimethyldiallylemmonium chloride) (PDDA). Then the outermost layer of 2-QDMF was cross-linked to bovine serum albumin (BSA), polyethylene glycol (PEG) or glutathione (GSH). It was found that when BSA modified quartz slides were immersed into solutions containing Hg2+ and Cu2+ respectively, the 2-QDMF can be quenched by Hg2+, but not by Cu2+. Under the optimization conditions, the quenched photoluminescence (PL) intensities of multilayer films were almost linearly proportional to the concentration of Hg2+ in the range of 1.0 × 10−8 to 1.0 × 10−6 mol L−1 and the detection limit was 4.5 × 10−9 mol L−1. The proposed method is intuitional and convenient, which can be applied to the determination of trace Hg2+ in the artificial water sample with satisfactory results.  相似文献   

12.
The effects of molar concentration on ZnSe and Zr-doped ZnSe thin films were studied after successful synthesis by electrochemical technique. 0.1 M zinc tetraoxosulphate (VI) heptahydrate (ZnSO4·7H2O) and 0.1 M selenium powder respectively served as the cationic and anionic precursors while 0.1 mol% of zirconium oxidchlorid (ZrOCl2·8H2O) was used as the dopant. The morphology, structure, elemental, light response, and electrical features of the samples were studied. The films exhibited uniform distribution of spherical balls with crystalline peaks at (220), (221), (300), and (310) planes. The elemental composition of the film confirmed the deposition of as-synthesized elements. Improved optical characteristics and reduced band gap energies of the films from 2.4 eV to 2.0 eV were gotten upon the addition of zirconium. Electrical results showed increased material conductivity at increasing dopant percentages. The synthesized materials are potentially applied in optoelectronics and photovoltaics.  相似文献   

13.
Sui B  Shen L  Jin W 《Talanta》2011,85(3):1609-1613
An ultrasensitive solid-phase fluorescence resonance energy quenching (FREQ) method for determination of 1,4-dihydroxybenzene (DHB) using mercaptosuccinic acid (MSA)-capped CdTe quantum dots (QDs) immobilized on silica nanoparticles (NPs) as donors was developed. In the method, silica NPs were first modified with 3-aminopropyltriethoxysilane (APTS). Then, MSA-capped CdTe QDs were immobilized on the surface of the APTS-modified silica NPs. Finally, DHB in the solution was attached to the empty sites on the surface of silica NPs with QDs through electrostatic interaction. The fluorescence emission of the QDs was quenched by the proximal DHB molecules on the silica NPs. The quenching efficiency of the solid-phase FREQ method was 200-times higher than that of the solution-phase FREQ method. Using the ultrasensitive solid-phase FREQ method, DHB as low as 2.4 × 10−12 mol/L could be detected. The method was applied to quantify trace DHB in water samples.  相似文献   

14.
Unsubstituted zinc phthalocyanine (ZnPc), 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ) and Zn tetrasulfo phthalocyanine (ZnTSPc) were non-covalently (electrostatic and/or π–π interaction) attached to graphene quantum dots (GQDs) to form GQDs-Pc nanoconjugates. Relative to Pcs alone, the presence of GQDs improved the triplet quantum yields with the following values: GQDs-ZnPc (0.73), GQDs-ZnTPPcQ (0.76) and GQDs-ZnTSPc (0.67). Respective Förster resonance energy transfer (FRET) efficiencies were calculated to be 0.81, 0.80 and 0.28. However, singlet oxygen generating abilities of the as-synthesized nanoconjugates were relatively low due to the screening effect of GQDs and quenching in water. This study shows that, the type of Pc, loading and solvent used are among the vital properties to consider when constructing GQD-nanoconjugate systems with optimal triplet quantum yield properties and investigation of their physicochemical properties.  相似文献   

15.
In this paper, a simple and sensitive approach for H5N1 DNA detection was described based on the fluorescence resonance energy transfer (FRET) from quantum dots (QDs) to carbon nanotubes (CNTs) in a QDs-ssDNA/oxCNTs system, in which the QDs (CdTe) modified with ssDNA were used as donors. In the initial stage, with the strong interaction between ssDNA and oxCNTs, QDs fluorescence was effectively quenched. Upon the recognition of the target, the effective competitive bindings of it to QDs-ssDNA occurred, which decreased the interactions between the QDs-ssDNA and oxCNTs, leading to the recovery of the QDs fluorescence. The recovered fluorescence of QDs was linearly proportional to the concentration of the target in the range of 0.01–20 μM with a detection limit of 9.39 nM. Moreover, even a single-base mismatched target with the same concentration of target DNA can only recover a limited low fluorescence of QDs, illustrating the good anti-interference performance of this QDs-ssDNA/oxCNTs system. This FRET platform in the QDs-ssDNA/oxCNTs system was facilitated to the simple, sensitive and quantitative detection of virus nucleic acids and could have a wide range of applications in molecular diagnosis.  相似文献   

16.
A new method using fluorescence coupled capillary electrophoresis (CE-FL) for monitoring self-assembly and proteolytic cleavage of hexahistidine peptide capped quantum dots (QDs) inside a capillary has been developed in this report. QDs and the ATTO 590-labeled hexahistidine peptide (H6-ATTO) were injected into a capillary, sequentially. Their self-assembly inside the capillary was driven by a metal-affinity force which yielded a new fluorescence signal due to Förster resonance energy transfer (FRET). The highly efficient separation of fluorescent complexes and the FRET process were analyzed using CE-FL. The self-assembly of QDs and biomolecules was found to effectively take place inside the capillary. The kinetics of the assembly was monitored by CE-FL, and the approach was extended to the study of proteolytic cleavage of surface conjugated peptides. Being the first in-depth analysis of in-capillary nanoparticle–biomolecule assembly, the novel approach reported here provides inspiration to the development of QD-based FRET probes for biomedical applications.  相似文献   

17.
Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV–Visible transmittance spectroscopy.  相似文献   

18.
The glass transition behaviour of polystyrene (PS) with systematically varied topologies (linear, star-like and hyperbranched) confined in nanoscalic films was studied by means of spectroscopic vis-ellipsometry. All applied PS samples showed no or only a marginal depression in glass transition temperature Tg in the order hyperbranched PS (5 K) > star-like PS (3 K) > linear PS (0 K) for the thinnest films analyzed. The Tg behaviour was accompanied by the observation of the film density in dependence of film thickness. A maximum decreased density of about 7% for hyperbranched PS and 5% for star-like PS and again no deviation in density of bulk was found for linear PS. Accordingly, we deduce from these results considering an experimental accuracy of about ± 2 K for Tg and up to ±3% for film density, that the polymer topology only barely influences Tg in the confinement of thin films.  相似文献   

19.
The present work deals with the deposition of NiO and Nitrogen (N)-doped NiO thin films by sol-gel spin coating technique. Structural, morphological, linear and non-linear optical characteristics of undoped and N-doped (1–15 wt%) NiO films were studied. From XRD measurements, it is evident that single phase nano crystalline NiO is formed for all doping concentrations. Surface morphology study shows that higher concentration of N doped NiO thin films were of high quality and EDX mapping confirmed the doping of Nitrogen in films. The Raman spectra of the studied films were analyzed over the range of 1400-200 cm−1. The optical studies confirm that as doping increases, transparency of the film decreases (except at 10% N doping) and the band gap narrows. Nonlinear parameters such as refractive index and susceptibilities also depend on N dopant concentration. Z-scan studies viz., absorption index, nonlinear refractive index were carried out on undoped and N doped NiO samples and the results were matched with theoretical calculated values.  相似文献   

20.
Förster resonance energy transfer (FRET) studies were carried out with CdTe quantum dots (QDs) synthesized in aqueous phase and various tetrasulfonated metallophthalocyanines (MPcS4, M = aluminum ((OH)AlPcS4), zinc (ZnPcS4), silicon ((OH)2SiPcS4) and germanium ((OH)2GePcS4) in a H2O:MeOH (1:1) solvent mixture. The QDs studied were capped with thioglycolic acid (TGA) or mercaptopropionic acid (MPA) with sizes ranging from 2.3 to 3.7 nm. Non-radiative energy transfer from QDs emission to MPcS4 complexes was observed. Study of the photophysics of the MPcs in the presence of the QDs revealed high triplet state quantum yields (ΦT, ranging from 0.41 to 0.85 in the presence of QDs), with corresponding long triplet state lifetimes (τT, which ranged from 140 to 610 μs in the presence of QDs) to allow for photosensitized reactions to occur. The efficiency of energy transfer and the donor–acceptor distance between the MPcs and the QDs were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号