首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of Cu2Fe2Ge4O13, previously thought to be CuFeGe2O6, has been determined from single-crystal X-ray diffraction data to be monoclinic, P21/m, a=12.1050(6), b=8.5073(4), c=4.8736(2) Å, β=96.145(1)°, Z=2, with R1=0.0231 and wR2=0.0605. The unique structure has an oligomer of four germanate tetrahedra, cross-linked laterally by square-planar copper ions, joined end-to-end by a zigzag chain of edge-sharing iron oxide octahedra. Running along the a-direction the metal oxide chain consists of alternating Cu-Cu and Fe-Fe dimers. A hypothetical series of homologous structures (Cun−2Fe2GenO3n+1 with n=3,4,…,∞) with different length germanate oligomers is proposed, where as n increases, the infinite chain of the CuGeO3 is approached. In this context, Cu2Fe2Ge4O13 is viewed as being built from blocks of CuGeO3 and the Fe oxide chains. This material has significance to the study of low-dimensional mixed-spin systems.  相似文献   

2.
New compounds CaY2Ge3O10 and CaY2Ge4O12 were prepared by heating mixtures of CaCO3, Y2O3 and GeO2 at 1200 °C. CaY2Ge3O10 is stable at 1300 °C, while CaY2Ge4O12 decomposes into a melt and CaY2Ge3O10 at approximately 1250 °C. We obtained single crystals of CaY2Ge3O10 by cooling a sample with an initial composition of Ca:Y:Ge=1:2:8 from 1300 °C with a rate of −6 °C/h. The crystal structure of CaY2Ge3O10 was determined by single crystal X-ray diffraction. CaY2Ge3O10 crystallizes in the monoclinic space group P21/c with a=6.0906(8), b=6.8329(8), and β=109.140(3)°, Z=4, and R1=0.029 for I>2σ(I). In the structure of CaY2Ge3O10, Ca and Y atoms are situated disorderly in three 7-fold coordination sites between isolated germanate groups of triple GeO4 tetrahedra, Ge3O10. The structural formula of CaY2Ge3O10 is expressed as (Ca0.45Y0.55)(Ca0.46Y0.54)(Ca0.09Y0.91)Ge3O10. The crystal structure of CaY2Ge4O12 was analyzed by the Rietveld method for the X-ray powder diffraction pattern. CaY2Ge4O12 is isotypic with SrNa2P4O12, crystallizing in the orthorhombic space group P4/nbm, a=9.99282(6), , Z=2, Rwp=0.092, Rp=0.067. CaY2Ge4O12 contains four-membered GeO4-tetrahedra rings, Ge4O12. Eight-fold coordinated square-anitiprism sites and 6-fold octahedral sites between the layers of the Ge4O12 rings are occupied by Y atom and Ca/Y atoms, respectively The structural formula is Y(Ca0.5Y0.5)2Ge4O12.  相似文献   

3.
The new monoclinic cerium borogermanate Ce6(BO4)2Ge9O22 was synthesized under high-pressure and high-temperature conditions in a Walker-type multianvil apparatus at 10.5 GPa and 1200 °C. Ce6(BO4)2Ge9O22 crystallizes with two formula units in the space group P21/n with lattice parameters a=877.0(2), b=1079.4(2), c=1079.1(2) pm, and β=95.94(3)°. As the parameter pressure favours the formation of compounds with cations possessing high coordination numbers, it was possible to produce simultaneously BO4-tetrahedra and GeO6-octahedra in one and the same borogermanate for the first time. Furthermore, the cerium atoms show high coordination numbers (C.N.: 9 and 11), and one oxygen site bridges one boron and two germanium atoms (O[3]), which is observed here for the first time. Besides a structural discussion, temperature-dependent X-ray powder diffraction data are presented, demonstrating the metastable character of this high-pressure phase.  相似文献   

4.
The crystal structure of SrAl2O4 at 1073 K was determined from conventional X-ray powder diffraction data using direct methods, and it was further refined by the Rietveld method. The structure was hexagonal (space group P63, Z=6) with a=0.89260(3) nm, c=0.84985(2) nm and V=0.58639(3) nm3. Final reliability indices were Rwp=7.87%, Rp=5.87% and RB=4.19%. The [AlO4] tetrahedra are linked to form trigonally distorted rings and they are joined in layers. These layers are stacked with a two-layer repeat and connected by the tetrahedral apices. All of the Sr atoms occupy the centers of the rings when viewed along the c-axis. The structure is described as a stuffed derivative of tridymite.  相似文献   

5.
0.8[xB2O3-(1 − x)P2O5]-0.2Na2O (with 0 ≤ x ≤ 1) glasses have been characterized by solution calorimetry at 298 K in acid solvent. The experimental data showed a strong negative departure of the enthalpy of mixing from the ideality described by the equation (in kJ/mol): ΔH = x(1 − x)(−660.2 + 570x). The results were interpreted on the basis of the structural data. Enthalpies of mixing were consistent with sub-regular solution behaviour.  相似文献   

6.
In an M-T-O model system (M is a polyvalent metal; T = Ge or Si), we consider initial stages of formation of cyclic MT clusters and the mechanism of their modification by T tetrahedra. The polyhedron ratio T/M in clusters increases progressively during modeling from one in M2T2 to two (M2T2 + 2T = M2T4), three (M2T2 + 2T2 = M2T6), and four (M2T2 + 2T + 2T2 = M2T8). These types of clusters were used to find precursor clusters for T-condensed structures of Na2Pr6Ge8O26, Na4Sc2Ge4O13, and Na5ScGe4O12. The TOPOS program package was used to carry out the complete 3D reconstruction of the self-assembly of Na,TR germanates: precursor cluster → primary chain → microlayer → microframework (supraprecursor) → ... framework. In all structures, as previously in six orthotetrahedral Na,TR germanate structures, the basic invariant type of four-polyhedral cyclic precursor cluster M2T2 was identified; this cluster is built of TR polyhedra, with CN = 6 or 7, linked via orthotetrahedra. The features of the generation of a Ge radical were considered in the form of a Ge2O7 chain and a Ge4O12 ring in various layers of the Na2Pr6Ge8O26 composite structure, a Ge4O13 chain in Na4Sc2Ge4O13, and a Ge12O36 ring in the Na5ScGe4O12 superionic conductor. Original Russian Text ? G.D. Ilyushin, L.N. Dem’yanets, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 484–496.  相似文献   

7.
0.8[xB2O3-(1 − x)SiO2]-0.2K2O (with 0 ≤ x ≤ 1) glasses were synthesized by melt quenching techniques. DSC curves of the glasses exhibit only one glass transition. Calorimetric measurements of heats of dissolution in lead borate at 973 K indicated small negative enthalpies of mixing. Consequently phase separation was not observed over the whole composition range. The results are in good agreement with the structural data available in the literature.  相似文献   

8.
Gd4Co2Mg3 (Nd4Co2Mg3 type; space group P2/m; a=754.0(4), b=374.1(1), c=822.5(3) pm and β=109.65(4)° as unit cell parameters) was synthesized from the elements by induction melting in a sealed tantalum tube. Its investigation by electrical resistivity, magnetization and specific heat measurements reveals an antiferromagnetic ordering at TN=75(1) K. Moreover, this ternary compound presents a metamagnetic transition at low critical magnetic field (Hcr=0.93(2) T at 6 K) and exhibits a magnetic moment of 6.3(1) μB per Gd-atom at 6 K and H=4.6 T. Due to this transition the compound shows a moderate magnetocaloric effect; at 77 K the maximum of the magnetic entropy change is ΔSM=−10.3(2) J/kg K for a field change of 0-4.6 T. This effect is compared to that reported previously for compounds exhibiting a magnetic transition in the same temperature range.  相似文献   

9.
The synthesis and structure of a pyrazole-based orthogonal ferromagnetically coupled tetracopper(II) 2 × 2 homoleptic grid complex [Cu4(PzOAPyz)4(ClO4)2](ClO4)2 · 6H2O (1), formed by the reaction between the ditopic ligand PzOAPyz and Cu(ClO4)2 · 6H2O, are described. The ligand contains terminal pyrazole and pyrazine residues bound to a central flexible diazine subunit (N–N) as well as one potentially bridging alkoxo group. The two adjacent metal centers are linked by an alkoxo oxygen forming essentially a square Cu4(μ-O4) cluster. In the Cu4(μ-O4) core, out of the four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by one of the oxygen atoms of a coordinated perchlorate ion. Complex 1 has been characterized structurally and magnetically. Although the large Cu–O–Cu bridge angles (137–138°) and short Cu–Cu distances (3.964–3.970 Å) are suitable for the transmission of the expected antiferromagnetic coupling, the square-based Cu4(μ-O4) cluster exhibits an intramolecular ferromagnetic exchange (J = 7.47 cm−1) between the metal centers with an S = 2 magnetic ground state associated with the quasi orthogonal arrangement of the magnetic orbitals (dx2-y2dx2-y2). The exchange pathway parameters have been evaluated from density functional calculations.  相似文献   

10.
A new compound, SrBi2B4O10, has been grown by cooling a melt with the stoichiometric composition. It is triclinic, P−1, a=6.819(1), b=6.856(1), c=9.812(2) Å, α=96.09(1), β=109.11(1), γ=101.94(1)°, V=416.5(1) Å3, Z=2. The crystal structure of the compound has been solved by direct methods and refined to R1=0.050 (wR2=0.128). The structure contains Bi-O pseudolayers build up from Bi-O chains involving oxocentred OBi3 triangles. Sr atoms and [B4O9]6− isolated anions (4B:3Δ□:<2Δ□>Δ) are located between the Bi-O packages.The thermal treatment as well as DSC experiment showed that the compound melts above 800 °C presumably according to the peritectic reaction: SrBi2B4O10 ↔ SrB2O4+SrB4O7+ Liquid. According to high-temperature X-ray powder diffraction study thermal expansion of SrBi2B4O10 structure is anisotropic (α11=13, α22=9, α33=2, αV=24×10−6 °C−1).  相似文献   

11.
The complex oxide Na3Fe2Mo5O16 has been synthesized, and its crystal structure was determined by single-crystal X-ray diffraction (space group (SG) P-3m1; a=5.7366(6) Å, c=22.038(3) Å; Z=2). The compound can be considered as a new structure type containing Mo3O13 cluster units, which can be derived from the Na2In2Mo5O16 structure model by doubling of the cell along the c-axis. Na3Fe2Mo5O16 crystallizes in centrosymmetric SG (P-3m1) and the positions of the sodium atoms are fully occupied in contrast to the proposed Na2In2Mo5O16 model SG (P3m1). Magnetic properties of Na3Fe2Mo5O16 were studied by superconducting quantum interference device measurements, revealing antiferromagnetic ordering below max=10(1) K. Thermal stability in air was investigated by in situ high-temperature X-ray powder diffraction. Structural relationships to Na2In2Mo5O16 and NaFe(MoO4)2 are discussed.  相似文献   

12.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

13.
Hydrothermal reaction of copper(II) acetate, 2,2′-bipyridine (bipy) and NH4VO3 at 170 °C lead to a new layered polyoxovanadate with organically covalent-bonded copper(II) complex, Cu2(bipy)2V6O17 (1). Cu2(bipy)2V6O17 (1) is a new copper(II) vanadium(V) oxide featuring a new layered architecture, in which the V2O7 dimeric units and the cyclic tetranuclear V4O12 cluster units are interconnected via corner sharing into a unique one-dimensional {V6O17}4− anionic chain, such chains are further bridged by {Cu(bipy)}2+ complex cations into a 010 organic–inorganic hybrid layer.  相似文献   

14.
A complete, critical evaluation of all phase diagram and thermodynamic data was performed for all phases of the (Na2SO4 + K2SO4 + Na2S2O7 + K2S2O7) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions were assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na,K)2SO4 and (Na,K)2S2O7. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

15.
Crystallographic space group, structural parameters and their thermal changes in oxide-ion-conducting Nd9.33(SiO4)6O2 were investigated using high-temperature single-crystal X-ray diffraction experiments in the temperature range of 295?T?900 K. The title compound has the apatite structure (space group P63/m), and no notable structural change occurred over the temperature range examined. Observed anisotropy in thermal motions of oxide ions which belong to SiO4 tetrahedron indicated high rigidity of the tetrahedron in the structure, indicating that they form sp3 hybrid orbitals and the ligand oxygens do not take part in oxide-ion conductivity. Virtually full occupation of the 6h Nd site and highly anisotropic displacements of oxide ion inside the hexagonal channel were maintained over the temperature range examined. This result confirms that oxide-ion transport inside the hexagonal channel is the dominant process of conduction in the title compound.  相似文献   

16.
Preparation and crystal structure of the novel compound [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 are reported. The title compound is prepared by heating of BiI3 and diethylene glycol at 413 K in a sealed quartz glass tube filled with argon. Deep red single crystals are grown and applied to perform X-ray powder diffraction and X-ray single-crystal diffraction measurements. The compound crystallizes triclinic with space group P-1: Z=2, a=13.217(1) Å, b=15.277(1) Å, c=22.498(1) Å, α=84.33(1), β=73.18(1), γ=67.48(1). [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 comprises the novel polynuclear [Bi8I30]6− anion and [Bi3I(C4H8O3H2)2(C4H8O3H)5]3+ as the cation. Cation as well as the anion can be assumed to represent intermediates between solid BiI3 and BiI3 completely dissolved in diethylene glycol.  相似文献   

17.
A new cesium gallophosphate, CsGa2(OH)2[(PO4)H(PO4)], with an original layer structure has been synthesized by hydrothermal route and characterized by single-crystal X-ray diffraction (R=0.0344, Rw=0.0319). Its structure crystallizes in the monoclinic space group P21/a with cell parameters , , , β=93.36(4)° and Z=2. It consists of [Ga(OH)PO4] layers built up of rutile ribbons interconnected through PO4 tetrahedra. The structure of CsGa2(OH)2[(PO4)H(PO4)] is closely related to those of (NH4)Ga(OH)PO4 and (en)Ga2(OH)2(PO4)2 (en=ethylenediamine [H3N(CH2)2NH3]2+). The three structures differ mainly from each other by the relative positions and the spacing of the successive layers, which are governed by different hydrogen bonding modes between [Ga(OH)PO4] layers and the interleaved species. The title compound presents strong symmetric hydrogen bonds O---H---O which bridge two PO4 tetrahedra of two successive layers. As a consequence, the distance between the layers is significantly shorter than in the two other amine compounds.  相似文献   

18.
19.
Two novel vanadium selenites {[VO(OH)(H2O)](SeO3)}4·2H2O 1 and (H3NCH2CH2NH3)[(VO)(SeO3)2] 2 were synthesized by hydrothermal method and their crystal structures were determined by single-crystal X-ray diffraction. It is characterized by inductively coupled plasma (ICP), thermogravimetric (TG) and elemental analyses. Compound 1 crystallizes in the monoclinic system, space group C2/c, a=21.2250(11) Å, b=12.6309(6) Å, c=17.0249(10) Å, β=96.830(3)°, V=4531.8(4) Å3 and Z=8, R1 [I>2σ(I)]=0.0344, wR2 [I>2σ(I)]=0.119; Compound 2 crystallizes in the monoclinic system, space group P21/c, a=9.6389(4) Å, b=6.9922(3) Å, c=15.0324(5) Å, β=102.297(2)°, V=989.90(7) Å3 and Z=4, R1 [I>2σ(I)]=0.0452, wR2 [I>2σ(I)]=0.117. {[VO(OH)(H2O)](SeO3)}4·2H2O has a 1D structure constructed from the {[VO(OH)(H2O)](SeO3)} chains. (H3NCH2CH2NH3)[(VO)(SeO3)2] has a layered structure composed of alternating VO5 and SeO3 units with protonated ethylenediamine as interlayer guest.  相似文献   

20.
The synthesis, crystal structure and magnetic properties are reported for the new bimetallic compound {(CuL1)[Co(NCS)4]} where L1 = N-rac-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The complex forms a one-dimensional zig-zag coordination polymer along the crystallographic c axis, with Co(II) and Cu(II) ions connected via thiocyanate bridges. The Co(II) centre in the [Co(NCS)4] fragment approximates a distorted tetrahedral symmetry. The Cu(II) geometry is a distorted tetragonal bipyramid with the apical position occupied by the bridging thiocyanate ligand and the basal ones by the four nitrogen atoms from the macrocyclic ring. The polymer chain nearest Cu(1)?Co(1) distances are 6.4152(9) and 6.0988(9) Å and the nearest Cu(1)?Co(1) interchain distances are 6.8609(9), 6.9628(9) and 6.0336(10) Å. The magnetization measurements for the examined compound have been carried out over the range 1.8–300 K. This data suggest ferromagnetic interactions through the thiocyanate bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号