首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycrystalline samples of two complex intermetallic borides Zr2Fe1−δRu5+δB2 and Zr2Fe1−δ(Ru1−xRhx)5+δB2 (δ=ca. 0.10; x=0.20) were synthesized by high-temperature methods and characterized by single-crystal X-ray diffraction, energy dispersive spectroscopy, and magnetization measurements. Both structures are variants of Sc2Fe(Ru1−xRhx)5B2 and crystallize in the space group P4/mbm (no. 127) with the Ti3Co5B2-type structure. These structures contain single-atom, Fe-rich Fe/Ru or Fe/Ru/Rh chains along the c-axis with an interatomic metal-metal distance of 3.078(1) Å, a feature which makes them viable for possible low-dimensional temperature-dependent magnetic behavior. Magnetization measurements indicated weak ferrimagnetic ordering with ordering temperatures ca. 230 K for both specimens. Tight-binding electronic structure calculations on a model “Zr2FeRu5B2” using LDA yielded a narrow peak at the Fermi level assigned to Fe-Fe antibonding interactions along the c-axis, a result that indicates an electronic instability toward ferromagnetic coupling along these chains. Spin-polarized calculations of various magnetic models were examined to identify possible magnetic ordering within and between the single-atom, Fe-rich chains.  相似文献   

2.
Yttrium-doped uranium brannerite (U1−xYxTi2O6) and thorutite (Th1−xYxTi2O6−δ) phases were synthesized in air at 1400°C. Powder X-ray diffraction revealed that these phases crystallized to form monoclinic (C2/m) structures. Crystal structures of U0.54Y0.46Ti2O6 (1) (a=9.8008(2); b=3.7276(1); c=6.8745(1); β=118.38(1); V=220.97(1); Z=2; RP=7.3%; RB=4.6%) and Th0.91Y0.09Ti2O6−δ (2) (a=9.8002(7); b=3.7510(3); c=6.9990(5); β=118.37(4); V=226.40(3); Z=2; RP=4.5%; RB=2.9%) were refined from powder neutron diffraction data. These two phases were isostructural, revealing planes of corner and edge-sharing TiO6 octahedra separated by irregular eight-fold coordinate U/Y or Th/Y atoms. The oxygen sites within the structure of 1 were found to be fully occupied, confirming that the doping of lower valence Y atoms occurs in conjunction with the oxidation of U(IV) to U(V). Y doping of the thorutite phase 2 does not lead to oxidation but rather the formation of oxygen vacancies within the structure.  相似文献   

3.
The n=2 Ruddlesden-Popper phases LaSr2CoMnO7 and La1.2Sr1.8CoMnO7 have been synthesized by a sol-gel method. The O6-type phases LaSr2CoMnO6 and La1.2Sr1.8CoMnO6 were produced by reduction of the O7 phases under a hydrogen atmosphere. The materials crystallize in the tetragonal I4/mmm space group with no evidence of long-range cation order in the neutron and electron diffraction data. Oxygen vacancies in the reduced materials are located primarily at the common apex of the double perovskite layers giving rise to square pyramidal coordination around cobalt and manganese ions. The oxidation states Co3+/Mn4+ and Co2+/Mn3+ predominate in the as-prepared and reduced materials, respectively. The materials are spin glasses at low temperature and the dominant magnetic interactions change from ferro- to antiferromagnetic following reduction.  相似文献   

4.
Clear evidence (in the form of structured diffuse scattering) is found for short range ordering of metal ions and associated induced structural relaxation in two members of the cubic BZN pyrochlore (Bi1.5−αZn0.5−β)(Zn0.5−γNb1.5−δ)O(7−1.5αβγ−2.5δ) solid solution. An average neutron powder diffraction structure refinement is carried out for one of these. Electron probe micro-analysis suggests that the primary mechanism for non-stoichiometry in cubic BZN is the removal of ZnO from the nominally fully occupied (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 end-member. A detailed bond valence sum analysis of a recently reported average crystal structure is used to suggest possible local cation ordering schemes along with the induced displacive relaxation that is likely to accompany such local cation ordering. The observed diffuse distribution is qualitatively interpreted via Monte Carlo modelling.  相似文献   

5.
The n-TiNiSn ternary intermetallic semiconductor is doped by the V donor impurity and the crystalline structure of the obtained Ti1−xVxNiSn solid solutions (х=0-0.10) is determined by X-ray diffraction. Temperature and concentration dependences of the resistivity and thermopower are investigated in 80-380 K range. As main results, the TiNiSn conductivity type is revealed insensitive to V doping and the thermopower factor substantially increases versus V content. First principle calculations based on DFT using FPLO and KKR-CPA methods are performed as well. Experimental data and electronic structure calculations are compared and discussed in terms of thermopower improvements.  相似文献   

6.
New rare-earth boron-rich compounds with the formula of RE1−xB12Si3.3−δ (RE=Y, Gd-Lu) (0?x?0.5,δ≈0.3) have been synthesized. They belong to a new type of rhombohedral structure with the space group of R-3m (No. 166) and z=9. The lattice constants were measured from powder XRD data. Crystal structure solved from powder XRD data for Tb0.68B12Si3 as a representative has been compared with that of YB17.6Si4.6 (or Y0.68B12Si3.01), whose structure was solved from single-crystal reflection data. The structure model is confirmed by high-resolution transmission microscope analysis. The vibrational modes of the new crystals were measured by Raman spectroscopy. Temperature dependence of magnetic susceptibility which was measured for RE1−xB12Si3.3−δ single crystals by SQUID revealed that they are paramagnetic materials down to 2.0 K.  相似文献   

7.
Single crystals of Ni7−δSnTe2 were grown during re-crystallization of the presynthesized powder in a two zone furnace. The modulated structure was solved and refined in the (3+2)-dimensional superspace group I4/mmm(0-α0, α00)0.ss.mm with lattice parameters a=3.759(1) and c=19.410(2) Å (measured at 153 K) and Z=2. Satellite reflections observed in the diffraction images can be assigned to the incommensurate modulation vectors q1=da* and q2=db* with d=0.410(1). The composition resulting from X-ray structure refinement is Ni5.81SnTe2. The structure model has been also developed in the orthorhombic (3+1)-dimensional superspace group Immm(α00)00s assuming twinning according to [110], giving thus the composition Ni5.79SnTe2. The origin of the modulation can be attributed to a variation of the occupancy of the Ni(3) site in Ni/Te slabs of the structure. Band structure calculations on a commensurate approximant and single crystal electrical resistivity measurements reveal anisotropic metallic conductivity for this compound.  相似文献   

8.
Measurements of the equilibrium oxygen content, electrical conductivity and thermopower in the perovskite-like solid solution La0.7Sr0.3Co1-zMnzO3−δ (z=0 and 0.25) as a function of the temperature and oxygen partial pressure are used to determine the temperature dependence of the conductivity and thermopower at different values of the oxygen deficiency. A model for a hopping conductor with screened charge disproportionation is applied for the data analysis in combination with trapping reactions of n- and p-type carriers on local oxygen vacancy clusters and manganese cations, respectively. Changes in the ratio of n-type to p-type mobility are due to variations in oxygen vacancy concentration and manganese content, while the energetic parameters governing charge disproportionation of the trivalent cobalt cations and formation of vacancy associates are shown to be essentially invariable. These calculated charge carrier site occupancies are used to model temperature variations of the electrical properties in La0.7Sr0.3Co1−zMnzO3−δ in favorable correspondence with experimental observations.  相似文献   

9.
Src homology 2 (SH2) domains provide connectivity in protein-tyrosine kinase (PTK)-dependent signaling through their high affinity association with phosphotyrosyl (pTyr)-containing peptide sequences. Because recognition of pTyr residues is central to SH2 domain-binding affinity, design of pTyr-mimicking residues has been one component of SH2 domain signaling antagonist development. Reported herein is the synthesis of (±)-(rel-1R,2R,5S)-3-acetyl-1,2,3,4,5,6-hexahydro-8-O-phosphoryl-1,5-methano-3-benzazocine-2-carboxylic acid methyl ester (3c) as a monomeric pTyr-mimicking analogue that constrains three torsion angles (χ1=168°; χ2=−85°; φ1=−113°) to values approximating those observed for a pTyr residue bound to the Grb2 SH2 domain (χ1=182°; χ2=−89°; φ1=−132°). Compound 3c differs from our previously reported analogue, (±)-(rel-1R,2R,5S)-3-acetyl-1,2,3,4,5,6-hexahydro-1-methyl-1,5-methano-3-benzazocin-8-ol, in lacking a methyl substituent at the bridgehead 1-position. Molecular modeling studies had indicated that this methyl group could potentially hinder SH2 domain binding. Synthesis of the desmethyl derivative was achieved by formation of the methanobenzazocine ring system using an intramolecular electrophilic cyclization that proceeds through an activated acyliminium intermediate. Importantly, the correct relative (2R) stereochemistry at the ‘α-carboxyl’-bearing carbon is obtained through base-catalyzed equilibration of a (2S/2R) diastereomeric mixture that results from intramolecular ring closure. Comparison of Grb2 SH2 domain-binding affinity of 3c (IC50=1167 μM) with conformationally flexible phosphorylated (±)-N-acetyl-tyrosine methyl ester (15; IC50=1469 μM) revealed no apparent enhancement in affinity. This apparent ineffectiveness of ‘local conformational constraint’ on SH2 domain-binding affinity of the monomeric pTyr mimetic is consistent with previous reports obtained by conformationally constraining pTyr-mimicking residues that were contained within peptide platforms. Although not providing high binding affinity in its current form, the novel 1,5-methano-3-benzazocine ring system may afford a novel platform for further elaboration and development of small molecule SH2 domain signaling antagonists.  相似文献   

10.
A series of oxygen-deficient n=2 Ruddlesden-Popper phases, Sr3Fe2−xCoxO7−δ (0.25≤x≤1.75), were prepared by solid-state reactions. Temperature-dependent susceptibility and field-dependent magnetization data indicate that for x≥0.25 the dominant magnetic interactions are ferromagnetic. The onset of strong ferromagnetic interactions is evident at ∼200 K, and a transition to a cluster-glass state is observed for all compositions below ∼45 K. The temperature variation of resistivity for all the compounds shows variable-range hopping behavior with two different localization energy scales: one for T<40 K and another for T>80 K. Large negative magnetoresistance (the largest MR ∼−65% for x=0.25) is observed for all phases. The magnetic susceptibility, Mössbauer and X-ray absorption near-edge spectroscopy data indicate that the formal oxidation state of Fe is close to 4+. The key role of d delocalization in the Sr3Fe2−xCoxO7−δ system is compared to the Sr3Fe2−xMnxO7−δ series, where d localization dominates the properties.  相似文献   

11.
CdVO3−δ and solid solutions of Cd1−xNaxVO3 with the GdFeO3-type perovskite structure were prepared using a high-pressure (6 GPa) and high-temperature technique. No significant oxygen and cation deficiency was found in CdVO3. Cd1−xNaxVO3 are formed in the compositional range of 0?x?0.2. CdVO3 and Cd1−xNaxVO3 demonstrate metallic conductivity and Pauli paramagnetism between 2 and 300 K. A large electronic contribution to the specific heat (γ=13.4 and ) for CdVO3 and Cd0.8Na0.2VO3, respectively) was observed at low temperatures due to the strongly correlated electrons. Crystal structures of CdVO3 and Cd0.8Na0.2VO3 were refined by X-ray powder diffraction: space group Pnma; Z=4; , , and for CdVO3 and , , and for Cd0.8Na0.2VO3.  相似文献   

12.
The novel oxide Sr2Co2−xGaxO5 with brownmillerite-type structure has been synthesized in the compositional range 0.3?x?0.8. Rietveld refinements using neutron powder diffraction data have been performed for the end compositions, x=0.3 and 0.8. The structure is best described in the space-group Icmm (no. 74) with unit cell parameters a=5.5678(6), 5.6126(7) Å, b=15.749(2), 15.733(2) Å and c=5.4599(6), 5.4559(7) Å for the x=0.3 and 0.8 compositions, respectively. The compounds were found to be G-type antiferromagnetic with the magnetic moments parallel to the c-axis. High-temperature magnetic susceptibility measurements confirmed the samples to be antiferromagnetic with Néel temperatures TN=505, 468 and 423 K for the x=0.3, 0.5 and 0.8 samples, respectively. High-resolution transmission electron microscopy and electron diffraction studies confirmed the I-centred structure and revealed the presence of disorder.  相似文献   

13.
LaFe1−xNixO3−δ (x=0.1−1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1−xNixO3−δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3−δ-“LaNiO3−δ” cross-section of the phase diagram of the La-Fe-Ni-O system has been proposed in the range of oxygen partial pressure −15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1−xNixO3−δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1−xNixO3−δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively.  相似文献   

14.
Cerium dioxides doped or substituted by neodymium have been prepared using low- (320°C) and high-temperature (1600°C) processes. The Nd substituted ceria phase obtained at high temperature is a solid solution Ce1−xNdxO2−δ 0?x?0.30. Electrical impedance spectroscopy analyses have been performed in the temperature range 40-700°C. At temperatures above 400°C, Nyquist representations allow to separate three signals corresponding to bulk, grain boundary and electrode responses. Non-linear variations of the resistance and the capacitance as functions of temperature and composition x are observed. In the case of grain boundary and electrode interface signals, constant phase elements with non-integer exponent n have been used to represent the equivalent circuits. For each contribution, the conductance strongly increases then reaches a limit value, above x=0.10. When composition x increases, the condensation of Nd-vacancy defect clusters might be at the origin of the non-linear evolution of the conductance. Bulk and grain boundary conductions present different activation energies (0.7 and 1.3 eV).  相似文献   

15.
The crystal chemistry, electronic structure, and electrical and magnetic properties of the novel perovskite-related nickel oxides Sr3Fe2−xNixO7−δ with 0?x?1.0 have been studied. X-ray diffraction and selected area electron diffraction (ED) data indicate that the samples have a tetragonal (Space group I4/mmm) structure. ED patterns and high-resolution images reveal the presence of a regular stacking along the c-axis for the x=1.0 sample. The lattice parameters, oxygen content, and average oxidation state of iron and nickel decrease with increasing Ni content. The electronic structure of the x=1.0 sample was studied by M 2p X-ray photoelectron spectroscopy (XPS). An analysis of the spectra using the cluster model indicates that this material is in the negative charge-transfer regime and the ground state is dominated by the 3dn+1L configuration with 2p holes (L) in the oxygen band. The insulator states are stabilized due to a p-p type band gap that arises because the p-d transfer integral Tσ dominates over the O 2p bandwith. Although magnetic measurements reveal the presence of ferromagnetic interactions that lead to magnetic frustration at , no long-range magnetic order was observed for the samples with x?0.3. The electrical resistivity decreases with increasing Ni content as the p-p band gap tend to close due to the reduction of the Tσ value. Negative magnetoresistance (∼−24% for x=0.6 and −7% for x=1.0 at 20 K and 9 T) was observed for the Ni containing samples.  相似文献   

16.
Zircon-type Ce1−xAxVO4+δ (A=Ca, Sr; x=0-0.2) are stable in air up to approximately 1300 K, whilst further heating or reducing oxygen partial pressure leads to formation of A-site deficient zircon and CeO2−δ phases. The stability boundaries of Ce1−xAxVO4+δ are comparable to those of vanadium dioxide and calcium orthovanadate. At oxygen pressures lower than 10−15 atm, perovskite-type CeVO3−δ is formed. The oxygen ion transference numbers of Ce1−xAxVO4+δ, determined by faradaic efficiency measurements in air, vary in the range from 2×10−4 to 6×10−3 at 973-1223 K, increasing with temperature. The oxygen ionic conductivity has activation energy of 87-112 kJ/mol and is essentially independent of A-site dopant content. Contrary to the ionic transport, p-type electronic conductivity and Seebeck coefficient of Ce1−xAxVO4+δ are influenced by the divalent cation concentration. The average thermal expansion coefficients of Ce1−xAxVO4+δ, calculated from high-temperature XRD and dilatometric data in air, are (4.7-6.1)×10−6 K−1.  相似文献   

17.
The total electrical conductivity and the Seebeck coefficient of perovskite phases La0.3Sr0.7Fe1−xGaxO2.65+δ (x=0-0.4) were determined as functions of oxygen nonstoichiometry in the temperature range 650-950°C at oxygen partial pressures varying from 10−4 to 0.5 atm. Doping with gallium was found to decrease oxygen content, p-type electronic conduction and mobility of electron holes. The results on the oxygen nonstoichiometry and electrical properties clearly show that the role of gallium cations in the lattice is not passive, as it could be expected from the constant oxidation state of Ga3+. The nonstoichiometry dependencies of the partial molar enthalpy and entropy of oxygen in La0.3Sr0.7(Fe,Ga)O2.65+δ are indicative of local inhomogeneities, such as local lattice distortions or defect clusters, induced by gallium incorporation. Due to B-site cation disorder, this effect may be responsible for suppressing long-range ordering of oxygen vacancies and for enhanced stability of the perovskite phases at low oxygen pressures, confirmed by high-temperature X-ray diffraction and Seebeck coefficient data. The values of the electron-hole mobility in La0.3Sr0.7(Fe,Ga)O2.65+δ, which increases with temperature, suggest a small-polaron conduction mechanism.  相似文献   

18.
The Ruddlesden-Popper ferrite Sr3Fe2O6+δ and its titania-doped derivatives Sr3Fe2−xTixO6+δ, where 0<x≤2, have been characterized by X-ray powder diffraction and thermogravimetry. The changes in oxygen content and crystal lattice parameters are consistent with titanium ions entering the solid solution in 4+ oxidation state with octahedral oxygen coordination. Electronic conductivity measurements on polycrystalline Sr3Fe2O6+δ and Sr3Fe0.8Ti1.2O6+δ in the temperature range 750-1000°C and oxygen partial pressures (pO2) varying between 10−20 and 0.5 atm revealed that the predominant partial conductivity of electrons is proportional to pO2−1/4 in the low pO2 region, while the predominant partial contribution of holes to the conductivity is proportional to pO2+1/4 in the high pO2 range. The pressure-independent oxygen ion conductivity is found to decrease with the increase in titanium content. A possible pathway for oxygen ion migration is discussed in relation to disorder in the oxygen sublattice and titanium doping.  相似文献   

19.
A systematic study of the Zn-rich corner of the ternary system Zn-Sb-In revealed the presence of two ternary compounds: stable Zn5Sb4In2−δ (δ=0.15) and metastable Zn9Sb6In2 with closely related crystal structures. Their common motif is a tetragonal basic structure of 32434 nets formed by the Sb atoms. The nets are stacked in antiposition to yield layers of square antiprisms sharing edges plus intervening tetracapped tetrahedra (tetreadersterns). The majority of Zn atoms occupy peripheral tetrahedra of such tetraedersterns, which produces frameworks with a composition “ZnSb”. These frameworks represent orthorhombic superstructures: (2×1×1) for Zn5Sb4In2−δ (Z=4) and (2×3×1) for Zn9Sb6In2 (Z=8) with respect to the tetragonal arrangement of Sb atoms. The In and remaining Zn atoms are distributed in the channels formed by the square antiprisms. Phase relations in the Zn-Sb-In system are complex. Crystals of metastable Zn9Sb6In2 are regularly intergrown with various amounts of Zn5Sb4In2−δ. Additionally, a monoclinic variant to orthorhombic Zn9Sb6In2 could be identified. Zn9Sb6In2 decomposes exothermically into a mixture of Zn5Sb4In2−δ, Zn4Sb3 and elemental Zn at around 480 K. Both Zn5Sb4In2−δ and Zn9Sb6In2 are poor metals with resistivity values that are characteristic of heavily doped or degenerate semiconductors (0.2−3 m Ω cm at room temperature).  相似文献   

20.
A series of materials, LaxSr2−xFeOδ (x=0.6-1.0), have been investigated structurally using neutron and X-ray diffraction techniques as well as Mössbauer spectroscopy as a function of temperature and composition. These materials adopt the I4/mmm K2NiF4-type structure over a wide range of temperatures (25-1200°C) and oxygen stoichiometries. In particular, it was observed that at a critical composition of x>0.8 there was a significant shift in the lattice parameters. This was attributed to changes in the Fe3+ content and the resultant effect of this on the dz2 orbitals giving a lengthening of the Fe-O bonds. On heating, completely linear behavior in both the a and c cell constants was observed, masking underlying bond length changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号