首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analysis of hearing threshold levels among 2066 white male workers employed in various U.S. industries studied in the 1968-72 NIOSH Occupational Noise and Hearing Survey (ONHS). The distribution of hearing threshold levels (HTL) is examined in relation to various risk factors (age, prior occupational noise, medical conditions) for hearing loss among a population of noise exposed and control (low noise-exposed) industrial workers. Previous analyses of a subset of these data from the ONHS focused on 1172 highly "screened" workers. An additional 894 male workers (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added to examine hearing loss in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) by individual test frequency. Results indicate that hearing threshold levels are higher among unscreened noise-exposed and control workers relative to screened workers. Analysis of risk factors such as nonoccupational noise exposure, medical conditions, and type of industry among unscreened controls indicated that these factors were not significantly associated with increased mean HTLs or risk of material impairment over and above what is expected due to age. Age-specific mean hearing threshold levels (and percentiles of the distribution) among the unscreened ONHS control population may be used as a comparison population of low-noise exposed white male industrial workers for evaluating the effectiveness of hearing conservation programs for workers less than 55 years of age. To make valid inferences regarding occupational noise-induced hearing loss, it is important to use hearing data from reference (control) populations that are similar with respect to the degree of subject screening, type of work force (blue vs white collar), and the distribution of other risk factors for hearing loss.  相似文献   

2.
Variability in background risk and distribution of various risk factors for hearing loss may explain some of the diversity in excess risk of noise-induced hearing loss (NIHL). This paper examines the impact of various risk factors on excess risk estimates of NIHL using data from the 1968-1972 NIOSH Occupational Noise and Hearing Survey (ONHS). Previous analyses of a subset of these data focused on 1172 highly "screened" workers. In the current analysis, an additional 894 white males (609 noise-exposed and 285 controls), who were excluded for various reasons (i.e., nonoccupational noise exposure, otologic or medical conditions affecting hearing, prior occupational noise exposure) have been added 2066) to assess excess risk of noise-induced material impairment in an unscreened population. Data are analyzed by age, duration of exposure, and sound level (8-h TWA) for four different definitions of noise-induced hearing impairment, defined as the binaural pure-tone average (PTA) hearing threshold level greater than 25 dB for the following frequencies: (a) 1-4 kHz (PTA1234), (b) 1-3 kHz (PTA123), (c) 0.5, 1, and 2 kHz (PTA512), and (d) 3, 4, and 6 kHz (PTA346). Results indicate that populations with higher background risks of hearing loss may show lower excess risks attributable to noise relative to highly screened populations. Estimates of lifetime excess risk of hearing impairment were found to be significantly different between screened and unscreened population for noise levels greater than 90 dBA. Predicted age-related risk of material hearing impairment in the ONHS unscreened population was similar to that predicted from Annex B and C of ANSI S3.44 for ages less than 60 years. Results underscore the importance of understanding differential risk patterns for hearing loss and the use of appropriate reference (control) populations when evaluating risk of noise-induced hearing impairment among contemporary industrial populations.  相似文献   

3.
Pure-tone hearing thresholds and anamnestic data pertaining to nosocusis and exposure to gun noise were analyzed for 9778 male railroad train-crew workers. A major portion of losses in hearing sensitivity due to railroad noise are obscured in comparisons of hearing levels of trainmen with the hearing levels of the unscreened samples of United States males given in Annex B, ISO 1999 [ISO 1999 (1990), "Acoustics--Determination of occupational noise exposure and estimation of noise-induced hearing impairment" (International Organization for Standardization, Geneva)]. Comparisons of the hearing levels, adjusted for nosocusis, of trainmen who had used no guns, with the hearing levels of otologically and noise screened males (Annex A, ISO 1999) reveal significant losses due to railroad noise. Additional losses were found at high frequencies in trainmen who had used guns. It appears that the effective Leq8h exposure level of trainmen to railroad noise is about 92 dBA, and 87-89 dBA to gun noise. These results are in general agreement with those of study of railway workers by Prosser et al. [Br. J. Audiol. 22, 85-91 (1988)]. Asymmetries in losses between the two ears, effects of ear protection, losses from nosocusis, and losses from sport, as compared to military, gun noise exposures, are examined.  相似文献   

4.
A number of studies have demonstrated that magnesium, administered prophylactically, can reduce the amount of hearing loss resulting from noise exposure. This study explored the possible role of naturally occurring body magnesium concentration in susceptibility of soldiers to noise-induced hearing loss. Participants were 68 adult males who had received extensive noise exposure over several years as a result of training with weapon systems. Each participant provided a pure-tone audiogram, blood sample, and noise-exposure history. A variety of pure-tone indices was correlated with serum magnesium levels as determined by atomic absorption spectroscopy. No significant correlations were observed between any audiometric index and body magnesium. The results of this study, therefore, do not support the hypothesis that there is a strong association between naturally occurring body magnesium and susceptibility to noise-induced hearing loss.  相似文献   

5.
6.
Hearing losses estimated for exposure to industrial and gun noise and for "typical" nosocusis are applied to the distributions of the hearing levels of adult males and females of the general population of an industrialized society unscreened for exposure to noise or ear disease. Noise exposure and demographic data applicable to the United States, and procedures for predicting noise-induced permanent threshold shift (NIPTS) and nosocusis, were used to account for some 8.7 dB of the 13.4 dB average difference between the hearing levels at high frequencies for otologically and noise screened versus unscreened male ears; (this average difference is for the average of the hearing levels at 3000, 4000, and 6000 Hz, average for the 10th, 50th, and 90th percentiles, and ages 20-65 years). According to the present calculations, this difference is due, in order of importance, to (1) nosocusis, (2) exposure to gun noise, and (3) exposure of workers to industrial noise. For these same frequencies and overall average, adjustments for nosocusis accounts for 2 dB of the 5.9-dB difference between the hearing levels of screened and unscreened female ears. For the average at 500, 1000, and 2000 Hz, the overall differences between the screened and unscreened populations is but 3.4 dB for males and 2.9 dB for females. The adjustment procedures reduced these differences to -0.5 and 0.9 dB, respectively.  相似文献   

7.
It is well known that excessive exposure to noise results in temporary and/or permanent changes in hearing sensitivity in both human and animal subjects. The purpose of this review is to describe the major findings from laboratory studies of experimentally induced hearing losses, both temporary and permanent, resulting from exposure to noise in animal subjects which have been published since the report of Kryter et al. (1966). The data reviewed support the following general statements: (1) The chinchilla is the most widely used and most appropriate animal model for studies of noise-induced hearing loss; (2) with continuous exposures to moderate-level noise, thresholds reach asymptotic levels (ATS) within 18-24 h; (3) permanent threshold shifts, however, depend upon the level, frequency, and the duration of exposure; (4) below a "critical level" of about 115 dB, permanent threshold shift (PTS) and cell loss are generally related to the total energy in continuous exposures; (5) periodic rest periods inserted in an exposure schedule are protective and result in less hearing loss and cochlear damage than equal energy continuous exposures; and (6) under some schedules of periodic exposure, threshold shifts increase over the first few days of exposure, then recover as much as 30 dB as the exposure continues.  相似文献   

8.
The interaction of noise with a variety of other agents and with some physical characteristics of the individual to produce noise-induced hearing loss is reviewed critically. The review is restricted, for the most part, to publications since 1970. Other agents interacting with steady-state noise that are reviewed here include: (1) ototoxic drugs (kanamycin, neomycin, ethacrynic acid, furosemide, and salicylates), (2) impulse noise, and (3) whole-body vibration. Physical characteristics of the individual that are reviewed are: (1) age, (2) presence of previous hearing loss from prior noise exposure, (3) eye color, and (4) race. Suggestions for future research in this general area are also made. Some of these suggestions are as follows: (1) to extend studies of the interaction of steady-state noise with impulse noise, salicylates, and whole-body vibration to encompass a broader range of exposure conditions, including exposure conditions typically encountered by the worker, (2) to develop an animal model of presbycusis to explore the interactions of noise-induced hearing loss and presbycusis, and (3) to explore the potential interactions resulting from concurrent exposure to multiple agents, such as impulse noise and ototoxic drugs, in younger, more susceptible animals.  相似文献   

9.
A mathematical model for noise-induced hearing loss is based on the assumption that hair cells are damaged, temporarily or permanently, by metabolic exhaustion, and that the number of damaged hair cells and the hearing loss are monotonically increasing functions of an energy deficiency. The purpose of the model is to focus on the influence of sound intensity, exposure duration, and temporal pattern of the sound exposure on the noise-induced hearing loss from long-duration exposures. The model is restricted to the range of sound levels where metabolic exhaustion probably is the main reason for the hair cell damage. Only exposures with similar frequency spectra and producing moderate hearing losses are considered; frequency dependence is not discussed.  相似文献   

10.
Sound exposures and hearing thresholds of symphony orchestra musicians   总被引:1,自引:0,他引:1  
To assess the risk of noise-induced hearing loss among musicians in the Chicago Symphony Orchestra, personal dosimeters set to the 3-dB exchange rate were used to obtain 68 noise exposure measurements during rehearsals and concerts. The musicians' Leq values ranged from 79-99 dB A-weighted sound pressure level [dB(A)], with a mean of 89.9 dB(A). Based on 15 h of on-the-job exposure per week, the corresponding 8-h daily Leq (excluding off-the-job practice and playing) ranged from 75-95 dB(A) with a mean of 85.5 dB(A). Mean hearing threshold levels (HTLs) for 59 musicians were better than those for an unscreened nonindustral noise-exposed population (NINEP), and only slightly worse than the 0.50 fractile data for the ISO 7029 (1984) screened presbycusis population. However, 52.5% of individual musicians showed notched audiograms consistent with noise-induced hearing damage. Violinists and violists showed significantly poorer thresholds at 3-6 kHz in the left ear than in the right ear, consistent with the left ear's greater exposure from their instruments. After HTLs were corrected for age and sex, HTLs were found to be significantly better for both ears of musicians playing bass, cello, harp, or piano and for the right ears of violinists and violists than for their left ears or for both ears of other musicians. For 32 musicians for whom both HTLs and Leq were obtained, HTLs at 3-6 kHz were found to be correlated with the Leq measured.  相似文献   

11.
It is studied whether the +5 dB penalty for impulsiveness established by ISO 1999:1990 accounts for a higher risk of noise-induced hearing loss. A total of 16 normal-hearing human subjects were exposed for 10 min to two types of binaural industrial-recordings: (1) a continuous broad-band noise normalized to L(EX,8 h)=80 dBA and (2) the combination of the previous stimulus with an impulsive noise normalized to L(EX,8 h)=75+5(db penalty)=80 dBA (peak level 117 dBC and repetition rate of 0.5 impacts per second). Distortion product otoacoustic emissions (DPOAEs) were measured in a broad frequency range before and in the following 90 min after the exposure. The group results show that the continuous exposure had a bigger impact on DPOAE levels, with a maximum DPOAE shift of approximately 5 dB in the frequency range of 2-3.15 kHz during the first 10 min of the recovery. No evident DPOAE shift is seen for the impulsive + continuous stimulus. The results indicate that the penalty overestimated the effects on DPOAE levels and support the concept that the risk of hearing loss from low-level impulses may be predicted on an equal-energy basis.  相似文献   

12.
《Applied Acoustics》1987,21(4):267-293
Member States of the European Economic Community are required to introduce Regulations which, in part, make the wearing of hearing protection mandatory under certain noise exposure conditions. Provisions are also to be introduced which can take into account possible difficulties that the wearer may have in the perception of warning sounds. This paper reviews the evidence that is relevant to any expert appraisal which formed part of a scheme of exemptions from the otherwise mandatory requirement.The evidence indicates that, when worn by people with normal hearing, the protectors will not in general impair the perception of appropriately selected alarm sounds. However, specific conditions are identified where the hearing protectors may reduce the effectiveness of some warning sounds, in particular for those machinery sounds which are associated with potential danger and for those people with an existing noise-induced hearing loss. It is recommended that the design of warning systems and the development of work practices should take account of possible failures in the perception of auditory warnings.  相似文献   

13.
The effects of industrial noise on hearing loss of workers in Cyprus was studied over the period from 1996 to 1999. Measurements of the noise exposure doses of more than 200 workers from 90 Cypriot industries, ranging from timber to food and beverage were evaluated. Audiometric examinations of the studied workers showed that 27.8% suffered some hearing damage while 7.7% suffered serious hearing loss.  相似文献   

14.
With the aim of investigating the capability of otoacoustic emission (OAE) in the detection of low levels of noise-induced hearing loss, audiometric and otoacoustic data of young workers (age: 18-35) exposed to different levels of industrial noise have been recorded. These subjects are participating in a long-term longitudinal study, in which audiometric, exposure (both professional and extra-professional), and OAE data (transient evoked and distortion product) will be collected for a period of several years. All measurements have been performed, during routine occupational health surveillance, with a standard clinical apparatus and acquisition procedure, which can be easily used in the occupational safety practice. The first study was focused on the correlation between transient evoked OAE signal-to-noise ratio and distortion product (DPOAE) OAE level and the audiometric threshold, investigating the causes of the rather large intersubject variability of the OAE levels. The data analysis has shown that, if both OAE data and audiometric data are averaged over a sufficiently large bandwidth, the correlation between DPOAE levels and audiometric hearing threshold is sufficient to design OAE-based diagnostic tests with good sensitivity and specificity also in a very mild hearing loss range, between 10 and 20 dB.  相似文献   

15.
Annoyance and increase of accident risk of workers from industrial noise levels in Egypt were studied. 683 workers from 15 Egyptian sites of industry, ranging from food to metal industry were evaluated. The goals of this study are to carry out measurements to evaluate industrial noise levels, are these levels exceeded the permissible levels set by Egyptian noise standard and policy to protect public health of workers?, to examine worker’s attitudes towards industrial noise, to know the relationship between industrial noise levels and degree of annoyance. Results showed that equivalent continuous noise levels ranged from 70 to 100 dB (A). Annoyance of respondents showed that 47.1% were highly annoyed, 5.8% their hearing were harmed. There was a strong relationship between industrial noise levels and percentage of highly annoyed respondents. By increasing industrial noise level possibility of workers to make accident was also increased. Respondents suggest less maximum daily exposure duration than those set by Egyptian law.  相似文献   

16.
Bies and Hansen [J. Acoust. Soc. Am. 88, 2743-2754 (1990)] have proposed an alternative formulation of the relationship between noise exposure and noise-induced hearing impairment to that presented in International Standard ISO 1999, in which they assume that presbycusis and noise-induced permanent threshold shift (NIPTS) are additive on an antilogarithm basis. Data concerning deterioration in hearing threshold levels at 4000 Hz due to aging in war veterans with NIPTS do not support the Bies and Hansen assumption but provide support for the formula for combining presbycusis and NIPTS incorporated in International Standard ISO 1999.  相似文献   

17.
Annoyance ratings in speech intelligibility tests at 45 dB(A) and 55 dB(A) traffic noise were investigated in a laboratory study. Subjects were chosen according to their hearing acuity to be representative of 70-year-old men and women, and of noise-induced hearing losses typical for a great number of industrial workers. These groups were compared with normal hearing subjects of the same sex and, when possible, the same age. The subjects rated their annoyance on an open 100 mm scale. Significant correlations were found between annoyance expressed in millimetres and speech intelligibility in percent when all subjects were taken as one sample. Speech intelligibility was also calculated from physical measurements of speech and noise by using the articulation index method. Observed and calculated speech intelligibility scores are compared and discussed. Also treated is the estimation of annoyance by traffic noise at moderate noise levels via speech intelligibility scores.  相似文献   

18.
The World Health Organization estimates that more than 12% of the world population is at risk for developing noise-induced hearing loss. At present, sound conditioning presents one means of reducing the deleterious effects of noise trauma. This phenomenon is now known to occur in a variety of mammals, including gerbils, chinchillas, guinea pigs, rabbits, rats, mice, and, of most importance, human subjects. A variety of sound conditioning paradigms have been proven successful in preventing morphological and physiological damage. Proposed mechanisms include the upregulation of endogenous antioxidants, the number of NMDA receptors, heat shock proteins, calcium buffering systems, and neurotrophic factors. Further studies are needed to understand the protective mechanisms afforded by sound conditioning. It is convincible that sound conditioning will benefit human subjects and provide a treatment for noise-induced hearing loss. The data presented in this review describe the current status and understanding of the phenomenon of sound conditioning.  相似文献   

19.
Using a manikin, equivalent free-field sound pressure level measurements were made from the portable digital audio players of 219 subjects, aged 10 to 17 years (93 males) at their typical and "worst-case" volume levels. Measurements were made in different classrooms with background sound pressure levels between 40 and 52 dBA. After correction for the transfer function of the ear, the median equivalent free field sound pressure levels and interquartile ranges (IQR) at typical and worst-case volume settings were 68 dBA (IQR?=?15) and 76 dBA (IQR?=?19), respectively. Self-reported mean daily use ranged from 0.014 to 12 h. When typical sound pressure levels were considered in combination with the average daily duration of use, the median noise exposure level, Lex, was 56 dBA (IQR?=?18) and 3.2% of subjects were estimated to exceed the most protective occupational noise exposure level limit in Canada, i.e., 85 dBA Lex. Under worst-case listening conditions, 77.6% of the sample was estimated to listen to their device at combinations of sound pressure levels and average daily durations for which there is no known risk of permanent noise-induced hearing loss, i.e.,?≤ 75 dBA Lex. Sources and magnitudes of measurement uncertainties are also discussed.  相似文献   

20.
Many of the 9 million workers exposed to average noise levels of 85 dB (A) and above are required to wear hearing protection devices, and many of these workers have already developed noise-induced hearing impairments. There is some evidence in the literature that hearing-impaired users may not receive as much attenuation from hearing protectors as normal-hearing users. This study assessed real-ear attenuation at threshold for ten normal-hearing and ten hearing-impaired subjects using a set of David Clark 10A earmuffs. Testing procedures followed the specifications of ANSI S12.6-1984. The results showed that the hearing-impaired subjects received slightly more attenuation than the normal-hearing subjects at all frequencies, but these differences were not statistically significant. These results provide additional support to the finding that hearing protection devices are capable of providing as much attenuation to hearing-impaired users as they do to normal-hearing individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号