首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

2.
The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi2−xFexAl8 (x=0.91) which adopts the CaCo2Al8 structure type with a=14.458(3) Å, b=12.455(3) Å, c=3.9818(8) Å and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated μeff=2.19 μB. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f13 configuration in the ground state.  相似文献   

3.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

4.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

5.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

6.
A new organically templated fluoro-phosphite gallium(III)-doped chromium(III) with formula (C2H10N2)[Ga0.98Cr0.02(HPO3)F3] has been synthesized by using mild hydrothermal conditions under autogeneous pressure. The crystal structure has been solved from X-ray single-crystal data. The compound crystallizes in the P212121 orthorhombic space group, with the unit-cell parameters a=12.9417(7) Å, b=9.4027(6) Å, c=6.3502(4) Å and Z=4. The final R factors were R1=0.022 (all data) and wR2=0.050. The crystal structure consists of [Ga0.98Cr0.02(HPO3)F3]2− anionic chains extended along the c-axis, with the ethylenediammonium cations placed in the cavities of the structure delimited by three different chains. The IR and Raman spectra show the characteristic bands of the phosphite oxoanion. The diffuse reflectance spectroscopy allowed us to calculate the Dq and Racah parameters of the Cr(III) cations in octahedral environment. The values are Dq=1375 cm−1, B=780 cm−1 and C=3420 cm−1. The polycrystalline ESR spectra performed at X and Q-bands show the signals belonging to the diluted Cr(III) cation in this phase. From the fit of the X-band ESR spectrum at 4.2 K, the calculated values of the axial (D) and rhombic (E) distortion parameters are 0.075 and 0.042 cm−1, respectively, the components of the g-tensor being gx=1.98, gy=1.99 and gz=1.90.  相似文献   

7.
Two new alkali uranyl oxychloro vanadates M7(UO2)8(VO4)2O8Cl with M=Rb, Cs, have been synthesized by solid-state reactions and their structures determined from single-crystal X-ray diffraction data. They crystallize in the orthorhombic system with space groups Pmcn and Pmmn, respectively. The a and b unit cell parameters are almost identical in both compounds while the c parameter in the Rb compound is doubled: Rb—a=21.427(5) Å, b=11.814(3) Å, c=14.203(3) Å, V=3595.1(1) Å3, Z=4, ρmes=5.93(2) g/cm3, ρcal=5.82(1) g/cm3; Cs—a=21.458(3) Å, b=11.773(2) Å, c=7.495(1) Å, V=1893.6(5) Å3, Z=2, ρmes=6.09(2) g/cm3, ρcal=6.11(1) g/cm3. A full-matrix least-squares refinement yielded R1=0.0221, wR2=0.0562 for 2675 independent reflections and R1=0.0386, wR2=0.1042 for 2446 independent reflections, for the Rb and Cs compounds, respectively. Data were collected with Mo(Kα) radiation and a charge coupled device (CCD) detector of a Bruker diffractometer. Both structures are characterized by [(UO2)8(VO4)2O8Cl]n7n layers parallel to the (001) plane. The layers are built up from VO4 tetrahedra, UO7 and UO6Cl pentagonal bipyramids, and UO6 distorded octahedra. The UO7 and UO6Cl pentagonal bipyramids are associated by sharing opposite equatorial edges to form infinite chains (UO5-UO4Cl-UO5)n parallel to the a axis. These chains are linked together by VO4 tetrahedra, UO6 octahedra, UO7 corner sharing and UO6Cl, Cl sharing. Both structures differ simply by the symmetry of the layers. The unit cell contains one centrosymmetric layer in the Cs compound, whereas in the two-layer unit cell of the Rb compound, two non-centrosymmetric consecutive layers are related by an inversion center. The layers appear to be held together by the alkali ions. The mobility of the M+ ions within the interlayer space in M7(UO2)8(VO4)2O8Cl and carnotite analog compounds is compared.  相似文献   

8.
A new solid solution TlFe0.22Al0.78As2O7 has been synthesized by a solid-state reaction. The structure of the title compound has been determined from a single-crystal X-ray diffraction and refined to final values of the reliability factors: R(F2)=0.030 and wR(F2)=0.081 for 1343 independent reflections with I>2σ(I). It crystallizes in the triclinic space group P-1, with a=6.296(2) Å, b=6.397(2) Å, c=8.242(2) Å, α=96.74(2)°, β=103.78(2)°, γ=102.99(3)°, V=309.0(2) Å3 and Z=2. The structure can be described as a three-dimensional framework containing (Fe/Al)O6 octahedra connected through As2O7 groups. The metallic units and diarsenate groups share oxygen corners to form a three-dimensional framework with interconnected tunnels parallel to the a, b and c directions, where Tl+ cations are located. The ionic conductivity measurements are performed on pellets of the polycrystalline powder. At 683 K, The conductivity value is 5.23×10−6 S cm−1 and the ionic jump activation energy is 0.656 eV. The bond valence analysis reveals that the ionic conductivity is ensured by Tl+ along the [001] direction.  相似文献   

9.
Magnetic and crystal structures of the manganite Pr0.8Ca0.2MnO3 have been studied by neutron powder and single-crystal X-ray diffraction. Structure refinements using single crystal data [orthorhombic system, Pnma, (No. 62), aRT=5.5534(3) Å, bRT=7.6548(8) Å, cRT=5.4400(5) Å, Dx=6.422 g cm−3, RRT=0.029, RwRT=0.038] are consistent with a single domain sample. Structure and atomic displacement parameters exclude any electronic localization, even in a disordered way at 300 and 100 K. Low temperature electron diffraction observations do not show any trace of charge ordering.A Pr contribution to the magnetic structure has been shown with a maximum moment of 0.79 μB and spins alignments roughly along [101] orientations, at a lower temperature than the ferromagnetic transition observed at 130 K, due to Mn spins ordering.  相似文献   

10.
A straight forward room-temperature synthesis of V(III) containing complex fluoride K3VF6, using KF and vanadium(III) acetylacetonate is reported. The pale green colored powder was characterized by chemical analysis, powder X-ray diffraction; diffuse reflectance spectroscopy, infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, photoluminescence spectroscopy, magnetic susceptibility measurements and photoluminescence spectroscopy. The powder X-ray diffraction pattern was fitted in P21/n space group (monoclinic) with a = 12.106 (1) Å, b = 17.685 (0) Å, c = 11.802 (0) Å, β = 92.23° (1). Differential scanning calorimetry showed phase transitions, occurring at 158 °C and 190 °C. In the FT-IR spectrum, characteristic band for the VF63− group was observed at 508 cm−1. The bands observed in the 335-361 cm−1 region and at 504 cm−1 in the room temperature Raman spectrum of K3VF6 corresponded to the F2g and A1g modes, respectively. The ratio of the frequencies (F2g/A1g) observed in the diffuse reflectance spectrum was fitted on the Tanabe-Sugano diagram to determine the Racah parameter B value of 712 cm−1. Magnetic ordering was not observed down to the lowest measured temperature of 5 K.  相似文献   

11.
Crystals of Ti2PTe2 have been synthesised by chemical vapour transport. Ti2PTe2 crystallises, isostructural to the mineral tetradymite (Bi2STe2), in the space group Rm with unit-cell parameters a=3.6387(2) Å and c=28.486(2) Å for the hexagonal setting. In the structure, layers of isolated phosphide and telluride anions form an ordered close sphere-packing with titanium cations filling two-thirds of the octahedral voids. From XANES fluorescence, the presence of Ti4+ is clearly established. In accordance with the ionic formula (Ti4+)2(P3−)(Te2−)2(e) metallic conductivity (ρ=40 μΩ cm at 300 K) and nearly temperature-independent paramagnetism are found. The electronic band structure shows bands of titanium states crossing the Fermi level in directions corresponding to the ab-plane and a band gap along the c-axis.  相似文献   

12.
The compound Cs2Hg2USe5 was obtained from the solid-state reaction of U, HgSe, Cs2Se3, Se, and CsI at 1123 K. This material crystallizes in a new structure type in space group P2/n of the monoclinic system with a cell of dimensions a=10.276(6) Å, b=4.299(2) Å, c=15.432(9) Å, β=101.857(6) Å, and V=667.2(6) Å3. The structure contains layers separated by Cs atoms. Within the layers are distorted HgSe4 tetrahedra and regular USe6 octahedra. In the temperature range of 25-300 K Cs2Hg2USe5 displays Curie-Weiss paramagnetism with μeff=3.71(2) μB. The compound exhibits semiconducting behavior in the [010] direction; the conductivity at 298 K is 3×10−3 S/cm. Formal oxidation states of Cs/Hg/U/Se may be assigned as +1/+2/+4/− 2, respectively.  相似文献   

13.
A single-crystal X-ray diffraction analysis has been performed on KDyP4O12 synthesized by a flux method. The new compound crystallizes at room temperature in the monoclinic space group C2/c with unit cell parameters: a=7.812(2) Å, b=12.318(3) Å, c=10.441(2) Å, β=111.09(2)°, V=937.42(4) Å3 and Dcal=3.66 g cm−3 for Z=4. A full-matrix least square refinement gave R1=0.022, wR2=0.04 for 2421 independent reflections (I>2σ(I)) refined with 84 parameters.The structure is built up from P4O124− cyclotetraphosphate anions linked by DyO8 polyhedra to form a three-dimensional framework, which delimits intersecting oxygen tunnels in which the K+ ions are located. The atomic arrangement can be described as a succession of layers extending along the [010] direction. The P4O124− ring anion is centrosymmetrical is connected by irregularly shaped KO10 polyhedra to form a layer structure parallel to (001). Dysprosium and potassium are surrounded by eight and ten oxygen atoms respectively.Samples have been examined by impedance and infrared spectroscopy techniques. The reported IR absorption investigation, recorded at room temperature in the frequency range 200-4000 cm−1, shows some bands characteristic of cyclotetraphosphates.The electrical conductivity of KDyP4O12 has subsequently been measured as a function of temperature, it represents a significant ionic conductivity and activation energy (σ=2.15×10−4 Ω−1cm−1 at 453 K and Ea=0.387 eV) corresponding to the mobility of the K+ cations located within tunnels.  相似文献   

14.
The isostructural Heusler phases LiRh2Si and LiRh2Ge have been synthesized from the elements and an excess of lithium at 1000 °C. Both materials adopt the CuMn2Al crystal structure, space group Fm−3m (No. 225) with the room temperature lattice parameter a=5.747(1) Å [Vol=189.866(1) Å3] and a=5.847(1) Å [Vol=199.88(6) Å3] for LiRh2Si and LiRh2Ge, respectively. X-ray analyses suggest mixed site occupancy of the form Li1−xRh2Si1+x (x<0.4), but not for LiRh2Ge. Both materials are diamagnetic, χmol(LiRh2Si)=−6×10−5 cm3(mole)−1 and χmol(LiRh2Ge)=−10×10−5 cm3(mole)−1 and metallic with room temperature resistivities of approximately 19 and 32 μΩ cm, respectively. These properties are consistent with the calculated electronic structure.  相似文献   

15.
A new 1:2 ordered perovskite La(Li1/3Ti2/3)O3 has been synthesized via solid-state techniques. At temperature >1185°C, Li and Ti are randomly distributed on the B-sites and the X-ray powder patterns can be indexed in a tilted (bbc+) Pbnm orthorhombic cell (a=ac√2=5.545 Å, b=ac√2=5.561 Å, c=2ac=7.835 Å). However, for T?1175°C, a 1:2 layered ordering of Li and Ti along 〈111〉c yields a structure with a P21/c monoclinic cell with a=ac√6=9.604 Å, b=ac√2=5.552 Å, c=ac3√2=16.661 Å, β=125.12°. While this type of order is well known in the A2+(B2+1/3B5+2/3)O3 family of niobates and tantalates, La(Li1/3Ti2/3)O3 is the first example of a titanate perovskite with a 1:2 ordering of cations on the B-sites.  相似文献   

16.
Na2Ni(HPO3)2, obtained as light yellow-green crystals under mild hydrothermal conditions, crystallizes in the orthorhombic Pnma space-group with lattice parameters: a=11.9886(3), b=5.3671(2), c=9.0764(3) Å, V=584.01 Å3, Z=4. The structure consists of zig-zag chains of NiO6 octahedra bridged by two HPO32− and the chains are further connected through HPO32− to four nearest chains to form a three dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The Na cations reside in the irregular Na(1)O5, Na-O of 2.276-2.745 Å, and Na(2)O9, Na-O of 2.342-2.376 Å, environments. The presence of the phosphite monoanion has been further confirmed by IR spectroscopy. Due to the 3D framework of Ni connected by O-P-O bridges, the magnetic susceptibility behaves as a paramagnet above 100 K (C=1.49(2) emu K mol−1, μeff=3.45 μB, Θ=−39(2) K) and below 6 K, it orders antiferromagnetically as confirmed the sharp drop and the non-Brillouin behavior of the isothermal magnetization at 2 K.  相似文献   

17.
The preparation of the potassium salt of hexathiocyanate Re(IV) as a pure and crystalline solid is described. The crystal structure for [{K(H2O)2}2{Re(NCS)6}] (P21/c, a = 8.29132(8) Å, b = 15.0296(2) Å, c = 8.5249(1) Å, β = 90.885(1)°, V = 1062.21(2) Å3) revealed the formation of a 3-D coordination polymer based on K-S linkages. This organization leads to rather short intermolecular S···S contacts. The magnetic behavior for the compound is characterized by substantial antiferromagnetic interactions (with Curie-Weiss parameters C = 1.93 cm3mol−1 and θ = −171 K) that in turn lead to a weak ferromagnet with TC = 13 K.  相似文献   

18.
Single crystals of Sr3B2SiO8 were obtained by solid-state reaction of stoichiometric mixture at 1200 °C. The crystal structure of the compound has been solved by direct methods and refined to R1=0.064 (wR=0.133). It is orthorhombic, Pnma, a=12.361(4), b=3.927(1), c=5.419(1) Å, V=263.05(11) Å3. The structure contains zigzag pseudo-chains running along the b axis and built up from corner sharing (Si,B)−O polyhedra. Boron and silicon are statistically distributed over one site with their coordination strongly disordered. Sr atoms are located between the chains providing three-dimensional linkage of the structure.The formation of Sr3B2SiO8 has been studied using annealing series in air at 900-1200 °C. According powder XRD, the probe contains pure Sr3B2SiO8 over 1100 °C. The compound is not stable below 900 °C. In the pseudobinary Sr2B2O5-Sr3B2SiO8 system a new series of solid solutions Sr3−xB2Si1−xO8−3x (x=0-0.9) have been crystallized from melt. The thermal behavior of Sr3B2SiO8 was investigated using powder high-temperature X-ray diffraction (HTXRD) in the temperature range 20-900 °C. The anisotropic character of thermal expansion has been observed: αa= −1.3, αb=23.5, αc=13.9, and αV=36.1×10−6 °C−1 (25 °C); αa= −1.3, αb=23.2, αc=5.2, and αV=27.1×10−6 °C−1 (650 °C). Maximal thermal expansion of the structure along of the chain direction [0 1 0] is caused by the partial straightening of chain zigzag. Hinge mechanism of thermal expansion is discussed.  相似文献   

19.
Single crystals of the title compounds were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using MoKα radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group P63/mmc, a=5.851(1) Å, c=25.009(5) Å, ρcal=4.94 g cm−3, Z=2 to a final R1=0.069 for 20 parameters with 312 reflections for Ba5Ru2Cl2O9 and space group , a=5.815(1) Å, c=14.915(3) Å, ρcal=5.28 g cm−3, Z=1 to a final R1=0.039 for 24 parameters with 300 reflections for Ba6Ru3Cl2O12. The structure of Ba5Ru2Cl2O9 is formed by the periodic stacking along [001] of three hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The BaO3 stacking creates binuclear face-sharing octahedra units Ru2O9 containing Ru(V). The structure of Ba6Ru3Cl2O12 is built up by the periodic stacking along [001] of four hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The ruthenium ions with a mean oxidation degree +4.67 occupy the octahedral interstices formed by the four layers hexagonal perovskite slab and then constitute isolated trinuclear Ru3O12 units. These two new oxychlorides belong to the family of compounds formulated as [Ba2Cl2][Ban+1RunO3n+3], where n represents the thickness of the octahedral string in hexagonal perovskite slabs.  相似文献   

20.
The novel binary europium silicide Eu3Si4 was synthesized from the elements. Its crystal structure is a derivative of the Ta3B4 type: space group Immm, a=4.6164(4) Å, b=3.9583(3) Å, c=18.229(1) Å, Z=2. In the structure, the silicon atoms form one-dimensional bands of condensed hexagons. Deviating from the prototype structure, a partial corrugation of the initially planar bands may be concluded from the analysis of the experimental electron density in the vicinity of the Si1 atoms. In the paramagnetic region, Eu3Si4 shows a 4f7 electronic configuration for the europium atoms. Two consecutive magnetic ordering transitions were found at 117 and 40 K. The first one is attributed to a ferromagnetic ordering of the Eu2 atoms; the second one is caused by a ferromagnetic ordering of the Eu1 atoms resulting in a ferrimagnetic ground state with a net magnetization of 7 μB at 1.8 K. The temperature dependence of the electrical resistivity reflects the metallic character of the investigated compound. Furthermore, the pronounced changes of the dρ/dT slope confirm the magnetic transitions. From bonding analysis with the electron localization function, Eu3Si4 shows a Zintl-like character and its electronic count balance can be written as (Eu1.83+)3(Si10.95−)2(Si21.8−)2, in good agreement with its magnetic behavior in the paramagnetic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号