首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From the high-resolution time-of-flight neutron powder diffraction data, the crystal structure of Sr2SnO4 at the temperature range between 4 and 300 K has been investigated. The Rietveld refinement has shown that Sr2SnO4 belongs to the space group Pccn, which can be derived from the tetragonal K2NiF4 structure by tilting the SnO6 octahedra along the [100]T- and [010]T-axis, respectively, with non-equal tilts. The earlier reported first-order phase transition in Sr2SnO4, from Bmab to P42/ncm, has not been observed.  相似文献   

2.
The compounds LnSrScO4, where Ln=La, Ce, Pr, Nd and Sm, have been synthesized. Rietveld profile analysis of powder X-ray diffraction data collected at room temperature reveal that the compounds possess a modified K2NiF4-type structure with orthorhombic cell symmetry formed by tilting of the ScO6 octahedra. Variable temperature (25-1200 °C) powder X-ray diffraction data show that at the highest temperatures the structures of LaSrScO4 and PrSrScO4 transform to the regular tetragonal K2NiF4-structure type but the degree of orthorhombicity (c/a) in the unit cells initially increases on heating for all materials, reaching a maximum near 300 °C. This structural behavior is analyzed in terms of relative ionic radii of the various lanthanides and scandium. A general structural model based on tolerance factors has been developed for the family of materials A2BO4 with various A and B cation sizes.  相似文献   

3.
Changes in structure and dielectric properties at elevated temperatures have been investigated on single-crystals of sodium potassium niobate, Na0.5K0.5NbO3, grown by the flux method. Single-crystal X-ray diffraction studies revealed that the crystals underwent orthorhombic-tetragonal and tetragonal-cubic phase transitions at 465 and 671 K during heating and 446 and 666 K during cooling, respectively. Both transitions were accompanied by volumetric discontinuities of collapse upon heating and expansion upon cooling, suggesting that the transitions were of the first order. The coordination numbers of an Nb showed a decreasing tendency with decreasing temperature, i.e., 6 in cubic, 5+1 in tetragonal and 4+2 in orthorhombic. An Na atom occupied a slightly different position from the K atom in 12-fold coordination, resulting in fewer coordination numbers of 8+4 in cubic and tetragonal and 7+5 in orthorhombic. The spontaneous polarisation (Ps) estimated from the atom positions and formal charges were approximately 0.29 C m−2 in orthorhombic and 0.18 C m−2 in tetragonal. The contribution of the alkaline oxide components to Ps was estimated to be approximately 15% in both ferroelectric forms. The temperature-induced transitions were also confirmed through the dielectric constant and dielectric loss at various frequencies and the differential scanning calorimetry.  相似文献   

4.
Solid-state reaction between SrCO3, Cr2O3 and SrF2 has produced the apatite phase Sr10(CrO4)6F2 and Sr2CrO4 which adopts the K2NiF4-type structure. The reaction outcome was very sensitive to the heating rate with rapid rise times favouring the formation of Sr2CrO4, which has been synthesised at ambient pressure for the first time. Powder X-ray diffraction and electron diffraction confirmed that Sr2CrO4 adopts a body centred tetragonal cell (space group I4/mmm) with lattice parameters a=3.8357(1) Å and c=12.7169(1) Å, while a combination of neutron and X-ray diffraction verified Sr10(CrO4)6F2 is hexagonal (space group P63/m) with lattice parameters a=9.9570(1) Å and c=7.4292(1) Å. X-ray photoelectron spectroscopy and magnetic measurements were used to characterise the oxidation states of chromium contained within these phases.  相似文献   

5.
A neutron diffraction study has been carried out on Sr0.5La1.5Li0.5Fe0.5O4 of K2NiF4-type derived structure and it has shown that iron in the tetravalent state has a high spin configuration (t32ge1g) and that the material has some stacking defects. At room temperature this compound shows an ordering between iron and lithium atoms leading to a nuclear cell a0√2, a0√2, c0 (a0 and c0 are the parameters of the K2NiF4-type cell). At low temperature (T < TN2) the magnetic structure can be described as antiferromagnetic, corresponding likely to a colinear pattern with a propagation vector of 0.5 (a0) along the [110] axis. At higher temperature (TN2 < T < TN) helimagnetic structure is consistent with a propagation vector of 0.47 (a0) [110].  相似文献   

6.
The title compounds and their deuterides have been prepared by solid-state and solid-gas reactions from the elements and investigated by X-ray and neutron powder diffraction as a function of temperature. At room temperature they crystallize with an anion-deficient cubic K2PtCl6-type structure (space group ) in which five hydrogen (deuterium) atoms surround iridium randomly on six octahedral sites with average bond distances of Ir-D=169-171 pm. At low temperature they undergo a tetragonal deformation (space group I4/mmm) to the partially ordered Sr2IrD5 (T=4.2K)-type structure in which four hydrogen (deuterium) atoms occupy planar sites with full occupancy (Ir-D=166-170 pm) and two hydrogen (deuterium) atoms axial sites (Ir-D=174-181 pm) with ∼50% occupancy, i.e., the data are consistent with a mixture of square-pyramidal [IrD5]4− complexes pointing in two opposite directions. The transitions occur at ∼240 K (Eu0.5Ca1.5IrD5, Eu0.5Sr1.5IrD5), ∼210 K (EuSrIrD5), ∼200 K (EuCaIrD5, Eu2IrD5), and are presumably of first order.  相似文献   

7.
The results of the X-ray structural study for the K4LiH3(SO4)4 single crystal are presented at a wide temperature range. The thermal expansion of the crystal using the X-ray dilatometry and the capacitance dilatometry from 8 to 500 K was carried out. The crystal structures data collection, solution and refinement at 125, 295, 443 and 480 K were performed. The K4LiH3(SO4)4 crystal has tetragonal symmetry with the P41 space group (Z=4) at room temperature as well as at the considered temperature range. The existence of a low-temperature, para-ferroelastic phase transition at about 120 K is excluded. The layered structure of the crystal reflects a cleavage plane parallel to (001) and an anisotropy of the protonic conductivity. The superionic high-temperature phase transition at TS=425 K is isostructural. Nevertheless, taking into account an increase of the SO4 tetrahedra libration above TS, a mechanism of the Grotthus type could be applied for the proton transport explanation.  相似文献   

8.
The evolution of the unit-cell parameters of CaZrO3 perovskite, an orthorhombic perovskite belonging to space group Pbnm, have been determined to a pressure of 8.7 GPa at room temperature using single-crystal X-ray diffraction measurements. A fit of a third-order Birch-Murnaghan equation of state to the pressure-volume data yields values of V0=258.04(2) Å3, KT0=154(1) GPa and K0′=5.9(3). Although CaZrO3 perovskite does not exhibit any phase transitions in this pressure range, the compression of the structure is anisotropic with [010] approximately 20% less compressible than either [100] or [001]. Compressional moduli for the unit cell parameters are: Ka0=142(1) GPa and Ka0′=4.4(2), Kb0=177(2) GPa and Kb0′=9.4(5), Kc0=146(2) GPa and Kc0′=5.4(4). Comparison with other orthorhombic Ca-oxide perovskites shows that there is systematic increase in compressional anisotropy with increasing distortion from cubic symmetry.  相似文献   

9.
Single crystals of CeAu4Si2 and CeAu2Si2 have been grown out of ternary fluxes rich in Au, and the former, also by sintering the stoichiometric composition at 750 °C. The single-crystal X-ray refinement result for CeAu4Si2 is orthorhombic, Cmmm (No. 65, Z=2), different from a tetragonal result found from an X-ray powder diffraction refinement [H. Nakashima, et al., J. Alloys Compds. 424 (2006) 7]. For CeAu2Si2, this is the first report of the stoichiometric crystalline phase, in the known tetragonal I4/mmm structure. The anisotropic field- and temperature-dependent magnetizations, as well as specific heat and resistivity data are compared. Although both compounds have related structural packing, they present unique magnetic features. CeAu2Si2 is a typical antiferromagnet with TN=8.8(1) K and CeAu4Si2 features a ferromagnetic component below Tc=3.3(1) K. Both phases have effective moments close in value to that of free Ce3+.  相似文献   

10.
A series of 25 members of the 1:3 ordered perovskite family of the type Ba4−xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2.  相似文献   

11.
Polycrystalline samples of the layered perovskites La2Sr2MgMnO8 and La2Sr2ZnMnO8 have been studied by X-ray and neutron powder diffraction, electron diffraction and magnetometry. X-ray and neutron powder diffraction indicate that the average structure is that of K2NiF4, with disordering of Mn and (Zn, Mg) cations over the octahedral sites. Electron diffraction data indicate that cation ordering is present over these sites in the xy planes, with the xy ordered planes being stacked in a disordered manner along z. No long-range magnetic ordering is observed in the temperature range 5≤T (K)≤300.  相似文献   

12.
Nuclear magnetic resonance (1H NMR and 19F NMR) measurements performed at 90-295 K, inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) patterns registered at 22-190 K, and X-ray powder diffraction (XRPD) measurements performed at 86-293 K, provided evidence that the crystal of [Zn(NH3)4](BF4)2 has four solid phases. The phase transitions occurring at: TC3=101 K, TC2=117 K and TC1=178 K, as were detected earlier by differential scanning calorimetry (DSC), were connected on one hand only with an insignificant change in the crystal structure and on the other hand with a drastic change in the speed of the anisotropic, uniaxial reorientational motions of the NH3 ligands and BF4 anions (at TC3 and at TC2) and with the dynamical orientational order-disorder process (“tumbling”) of tetrahedral [Zn(NH3)4]2+ and BF4 ions (at TC1). The crystal structure of [Zn(NH3)4](BF4)2 at room temperature was determined by XRPD as orthorhombic, space group Pnma (No. 62), a=10.523 Å, b=7.892 Å, c=13.354 Å and Z=4. Unfortunately, it was not possible to determine the structure of the intermediate and the low-temperature phase. However, we registered the change of the lattice parameters and unit cell volume as a function of temperature and we can observe only a small deviation from near linear dependence of these parameters upon temperature in the vicinity of the TC1 phase transition.  相似文献   

13.
The magnetic structure of the Fe2P-type R6CoTe2 phases (R=Gd-Er, space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. All phases demonstrate high-temperature ferromagnetic and low-temperature transitions: TC=220 K and TCN=180 K for Gd6CoTe2, TC=174 K and TCN=52 K for Tb6CoTe2, TC=125 K and TCN=26 K for Dy6CoTe2, TCN=60 K and TN=22 K for Ho6CoTe2 and TCN∼30 K and TN∼14 K for Er6CoTe2.Between 174 and 52 K Tb6CoTe2 has a collinear magnetic structure with K0=[0, 0, 0] and with magnetic moments along the c-axis, whereas below 52 K it adopts a non-collinear ferromagnetic one.Below 60 K the magnetic structure of Ho6CoTe2 is that of a non-collinear ferromagnet. The holmium magnetic components with a K0=[0, 0, 0] wave vector are aligned ferromagneticaly along the c-axis, whereas the magnetic component with a K1=[1/2, 1/2, 0] wave vector are arranged in the ab plane. The low-temperature magnetic transition at ∼22 K coincides with the reorientation of the Ho magnetic component with the K0 vector from the collinear to the non-collinear state.Below 30 K Er6CoTe2 shows an amplitude-modulate magnetic structure with a collinear arrangement of magnetic components with K0=[0, 0, 0] and K1=[1/2, 1/2, 0]. The low-temperature magnetic transition at ∼14 K corresponds to the variation in the magnitudes of the MErK0 and MErK1 magnetic components.In these phases, no local moment was detected on the cobalt site.The magnetic entropy of Gd6CoTe2 increases from ΔSmag=−4.5 J/kg K at 220 K up to ΔSmag=−6.5 J/kg K at 180 K for the field change Δμ0H=0-5 T.  相似文献   

14.
The citrate-nitrate gel combustion route was used to prepare SrFe2O4(s), Sr2Fe2O5(s) and Sr3Fe2O6(s) powders and the compounds were characterized by X-ray diffraction analysis. Different solid-state electrochemical cells were used for the measurement of emf as a function of temperature from 970 to 1151 K. The standard molar Gibbs energies of formation of these ternary oxides were calculated as a function of temperature from the emf data and are represented as (SrFe2O4, s, T)/kJ mol−1 (±1.7)=−1494.8+0.3754 (T/K) (970?T/K?1151). (Sr2Fe2O5, s, T)/kJ mol−1 (±3.0)=−2119.3+0.4461 (T/K) (970?T/K?1149). (Sr3Fe2O6, s, T)/kJ mol−1 (±7.3)=−2719.8+0.4974 (T/K) (969?T/K?1150).Standard molar heat capacities of these ternary oxides were determined from 310 to 820 K using a heat flux type differential scanning calorimeter (DSC). Based on second law analysis and using the thermodynamic database FactSage software, thermodynamic functions such as ΔfH°(298.15 K), S°(298.15 K) S°(T), Cp°(T), H°(T), {H°(T)-H°(298.15 K)}, G°(T), free energy function (fef), ΔfH°(T) and ΔfG°(T) for these ternary oxides were also calculated from 298 to 1000 K.  相似文献   

15.
Properties of Sr2Cu(PO4)2 and Ba2Cu(PO4)2 having [Cu(PO4)2] linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at TM=92 K for Sr2Cu(PO4)2 and TM=82 K for Ba2Cu(PO4)2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/kB=143.6(2) K for Sr2Cu(PO4)2 and g=2.073(4) and J/kB=132.16(9) K for Ba2Cu(PO4)2 (Hamiltonian H=JΣSiSi+1). The similar J/kB values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, TN, were below 0.45 K. Sr2Cu(PO4)2 and Ba2Cu(PO4)2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with kBTN/J<0.34% together with Sr2CuO3 (kBTN/J≈0.25%) and γ-LiV2O5 (kBTN/J<0.16%). Sr2Cu(PO4)2 and Ba2Cu(PO4)2 were stable in air up to 1280 and 1150 K, respectively.  相似文献   

16.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

17.
Sr2Co2O5 with the perovskite-related brownmillerite structure has been synthesised via quenching, with the orthorhombic unit cell parameters a=5.4639(3) Å, b=15.6486(8) Å and c=5.5667(3) Å based on refinement of neutron powder diffraction data collected at 4 K. Electron microscopy revealed L-R-L-R-intralayer ordering of chain orientations, which require a doubling of the unit cell along the c-parameter, consistent with the assignment of the space group Pcmb. However, on the length scale pertinent to NPD, no long-range order is observed and the disordered space group Imma appears more appropriate. The magnetic structure corresponds to G-type order with a moment of 3.00(4) μB directed along [1 0 0].  相似文献   

18.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

19.
Effects of magnesium substitution on the magnetic properties of Nd0.7Sr0.3MnO3 have been investigated by neutron powder diffraction and magnetization measurements on polycrystalline samples of composition Nd0.7Sr0.3MnO3, Nd0.6Mg0.1Sr0.3MnO3, Nd0.6Mg0.1Sr0.3Mn0.9Mg0.1O3, and Nd0.6Mg0.1Sr0.3Mn0.8Mg0.2O3. The pristine compound Nd0.7Sr0.3MnO3 is ferromagnetic with a transition temperature occurring at about 210 K. Increasing the Mg-substitution causes weakened ferromagnetic interaction and a great reduction in the magnetic moment of Mn. The Rietveld analyses of the neutron powder diffraction (NPD) data at 1.5 K for the samples with Mg concentration, y=0.0 and 0.1, show ferromagnetic Mn moments of 3.44(4) and 3.14(4) μB, respectively, which order along the [001] direction. Below 20 K the Mn moments of these samples become canted giving an antiferromagnetic component along the [010] direction of about 0.4 μB at 1.5 K. The analyses also show ferromagnetic polarization along [001] of the Nd moments below 50 K, with a magnitude of almost 1 μB at 1.5 K for both samples. In the samples with Mg substitution of 0.2 and 0.3 only short range magnetic order occurs and the magnitude of the ferromagnetic Mn moments is about 1.6 μB at 1.5 K for both samples. Furthermore, the low-temperature NPD patterns show an additional very broad and diffuse feature resulting from short range antiferromagnetic ordering of the Nd moments.  相似文献   

20.
Strontium europium aluminum silicon nitride, Sr0.99Eu0.01AlSiN3, was synthesized by heating a mixture of binary nitrides at 2173 K and a N2 gas pressure of 190 MPa. Single crystals of Sr0.99Eu0.01AlSiN3 approximately 30 μm were obtained. The structure was confirmed to be an isotypic structure of CaAlSiN3 in the orthorhombic space group Cmc21, analyzed by single-crystal X-ray diffraction. The lattice parameters are a=9.843(3), b=5.7603(16), c=5.177(2) Å, cell volume=293.53(17) Å3. It shows an orange-red photoluminescence by 5d→4f transition of Eu2+ at around 610 nm under excitation ranging from ultraviolet to 525 nm. The photoluminescence intensity, temperature characteristics, and oxidative stability were comparable or superior to those of CaAlSiN3:Eu2+ phosphor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号