首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new compounds, a one-dimensional (1D) zinc phosphite, (C4H8N2H4)[Zn(HPO3)2] (I), two three-dimensional (3D) metal phosphites (C4H8N2H4)[Zn3(HPO3)4] (II) and (C4H8N2H4)[Zn(3−x)Cox(HPO3)4(H2O)2] (x≈0.83) (III) have been synthesized under hydrothermal conditions templated by piperazine and characterized by single-crystal X-ray diffraction, XRD, IR, UV-vis spectra and SQUID magnetometer. Compound I displays 1D chain-like structure, containing corner-shared (cs) four-membered rings. Interestingly, the structures of II and III show 1D chains similar to those observed in I. It is noteworthy that III represents the first cobalt-substituted zinc-phosphite. Crystal data: I, monoclinic, C2/c, a=17.748(2) Å, b=7.428(9) Å, c=8.8071(11) Å, β=105.345(3)°, V=1091.9 Å3, Z=4. II, Monoclinic P21/c, a=9.9435(4) Å, b=10.1438(3) Å, c=17.8164(5) Å, β=95.665(2)°, V=1788.27 Å3, Z=4, and III, Monoclinic P21/c, a=7.2338(2) Å, b=15.0238(5) Å, c=9.2153(3) Å, β=107.741(2)°, V=953.88(5) Å3, Z=2.  相似文献   

2.
Novel one-dimensional (1D) chains of three lanthanide complexes La(L1)3(CH3OH)]·CH3OH (L1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L2)3(H2O)2]·2.75H2O (L2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L3)3(CH3OH)2(H2O)]·CH3OH (L3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C29H29LaO11, monoclinic, P21/n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, wR2=0.0919; for 2: C27H30.50LaO13.75, triclinic, P−1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, wR2=0.0820; and for 3: C30H35LaO13, monoclinic, P2(1)/c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, wR2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1-3.  相似文献   

3.
Single crystals of [H3dien]·(FeF6)·H2O (I) and [H3dien]·(CrF6)·H2O (II) are obtained by solvothermal synthesis under microwave heating. I is orthorhombic (Pna21) with a=11.530(2) Å, b=6.6446(8) Å, c=13.787(3) Å, V=1056.3(2) Å3 and Z=4. II is monoclinic (P21/c) with a=13.706(1) Å, b=6.7606(6) Å, c=11.3181(9) Å, β=99.38(1)°, V=1034.7(1) Å3 and Z=4. The structure determinations, performed from single crystal X-ray diffraction data, lead to the R1/wR2 reliability factors 0.028/0.066 for I and 0.035/0.102 for II. The structures of I and II are built up from isolated FeF6 or CrF6 octahedra, water molecules and triprotonated amines. In both structures, each octahedron is connected by hydrogen bonds to six organic cations and two water molecules. The iron-based compound is also characterized by 57Fe Mössbauer spectrometry: the hyperfine structure confirms the presence of Fe3+ in octahedral coordination and reveals the existence of paramagnetic spin fluctuations.  相似文献   

4.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

5.
The reactivity of the dimeric cyclopalladated compounds derived from biphenyl-2-ylamine (μ-X)22-N2′,C1-1-Pd-2-{(2′-NH2C6H4)C6H4}]2 [X = OAc (1), X = Cl (2)] towards unsaturated organic molecules is reported. Compound 1 reacted with carbon monoxide and tbutyl isocyanide producing phenanthridin-6(5H)-one and N-tert-butylphenanthridin-6-amine in 63% and 88% yield, respectively. Compound 2 reacted separately with diphenylacetylene and 3-hexyne, affording the mononuclear organopalladium compounds [κ2-N2″,C12-C2,C3- 1-Pd{(R-CC-R)2-2′-(2″-NH2C6H4)C6H4}Cl] [R = Ph (5), R = Et (6)] in 50-60% yield, which derived from the insertion of two alkyne molecules into the C-Pd σ bonds of 2. The crystal structure of compounds 5 and 6 has been determined. Compound 5 crystallized in the monoclinic space group P21/n with a = 13.3290(10) Å, b = 10.6610(10) Å and c = 22.3930(10) Å and β = 100.2690(10)°. Compound 6 crystallized in the triclinic space group with a = 7.271(7) Å, b = 10.038(3) Å and c = 16.012(5) Å, and α = 106.79(3)°, β = 96.25(4)° and γ = 99.62(4)°. The crystal structures of 5 and 6 have short intermolecular Pd-Cl?H-N-Pd non-conventional hydrogen bonds, which associated the molecules in chains in the first case and in dimers in the second.  相似文献   

6.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

7.
Three novel coordination polymers [Cd3(L)2(μ-Br)(μ-Cl)Br3Cl] (1), [Cd3(L)2(μ-Cl)2Cl4] (2) and [Cd(L)Cl]2[CdCl4]·H2O (3) were obtained by reactions of an imidazole-containing tripodal ligand N1-(2-aminoethyl)-N1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(II) salts. Their structures were determined by X-ray crystallography. Crystal data for 1, monoclinic system, P21/c, a=7.752(4) Å, b=31.70(2) Å, c=14.012(7) Å, β=109.439(7)°, V=3247(3) Å3, Z=4. 2, monoclinic system, P21/c, a=7.6564(15) Å, b=31.433(6) Å, c=13.925(3) Å, β=109.89(3)°, V=3151.1(11) Å3, Z=4. 3, orthorhombic system, Pbcn, a=22.950(2) Å, b=8.435(7) Å, c=17.360(2) Å, V=3360.3(51) Å3, Z=4. Complexes 1 and 2 have similar one-dimensional (1D) branched-chain structure while complex 3 features a 1D zigzag cationic chain with [CdCl4]2− serving as counter anion. The photoluminescent measurements reveal that all the complexes exhibit blue fluorescence at room temperature in the solid state.  相似文献   

8.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

9.
Four new SnII phosphonates have been synthesized by hydrothermal methods, and their structures determined by single-crystal X-ray diffraction. Tin(II) 3-pyridylphosphonate, SnO3PC5H4N (I), crystallizes in P21/c with a=4.9595(8) Å, b=10.7673(18) Å, c=13.996(2) Å, and β=93.616(2)°. Tri-tin(II) (μ-3)-oxo-(bis)-4-pyridylphosphonate, Sn3O(O3PC5H4N)2 (II), crystallizes in P-1 with a=7.2406(14) Å, b=9.9524(19) Å, c=12.604(3) Å, α=104.510(11)°, β=90.326(11)°, and γ=110.897(11)°. Tin(II) 6-methyl-2-pyridylphosphonate quadrahydrate, Sn(O3PC5H3NCH3)·0.25H2O (III), crystallizes in Pna21, a=18.955(3) Å, b=9.7543(14) Å, and c=17.833(3) Å. Tin(II) 4-cyanophenylphosphonate, Sn(O3PC6H4CN) (IV), crystallizes in P-1, a=5.0019(3) Å, b=8.4396(5) Å, c=10.3099(6) Å, α=90.352(3)°, β=94.894(3)°, and γ=92.236(4)°. I, II, and IV have ladder-type structures, and III is a layered compound. The structural variations show the effects of the Sn-N interaction on the final structures.  相似文献   

10.
The synthesis of the biphenyl alkynyl thiols and thioesters R′-CC-C6H4-C6H4-SR (3: R′ = SiMe3, R = C(O)Me; 4: R′ = SiMe3, R = H; 5: R′ = H, R = C(O)Me) from I-C6H4-C6H4-SC(O)Me (1) is described. Molecules 1 and 5 have been used as starting materials in the synthesis of mono- and heterobimetallic transition metal complexes of type LnM′-CC-C6H4-C6H4-SR (7: LnM′ = Fc, R = C(O)Me; 8: LnM′ = Fc, R = H; 10: LnM′ = (Ph3P)Au, R = C(O)Me; 14: LnM′ = FcPPh2-Au, R = C(O)Me; Fc = (η5-C5H5)(η5-C5H4)Fe; FcPPh2 = (η5-C5H5)(η5-C5H4PPh2)Fe). While complex 7is accessible by the Sonogashira cross-coupling of Fc-CCH (6) with 1, molecules 10 and 14 can be prepared by treatment of the thioester 5 with (Ph3P)AuCl (9) and FcPPh2-AuCl (13), respectively.The molecular solid state structures of 3, 7, 10 and 13-15 have been determined by single crystal X-ray crystallographic analysis. Typical features of these species are their linear M-CC-C6H4-C6H4-SR structure and the lack of coplanarity of the biphenyl arene rings. The overall length of these complexes are 13.345(2) Å for 3 (molecule A), 15.146(3) Å for 7, 15.705(2) Å for 10 (molecule A) and 15.649(4) Å for 14. The thioester groups are pointing away from the ferrocene building block. In 7 a linear 1D chain is set-up by π-interactions between two independent molecules of 7. Characteristic for 15 is the formation of a Au2I2 ring, while 13 is monomeric.All compounds were studied with cyclic voltammetry. Characteristic are the reversible ferrocene Fe(II)/Fe(III) redox wave, the irreversible reduction of Au(I) to Au(0), the oxidative cleavage of the S-C(O)Me sulfur-carbon (3, 5, 7, 10 and 14) and of the sulfur-hydrogen bond (4 and 8), respectively. Electronic effects extending from the -SH-end group to the ferrocene unit resulting in considerable shifts of the redox potential of the latter entity are found. Coordination of Au(I) at the FcPPh2 moiety also results in a shift of the redox potential of the ferrocene group indicative of an electron withdrawing effect of the Au(I) species.  相似文献   

11.
The high-yield syntheses of trifluoroacetonitrile (1a), pentafluoropropionitrile (1b) and heptafluorobutyronitrile (1c) under mild reaction conditions using readily available starting materials (trifluoroacetamide, pentafluoropropionamide, heptafluorobutanamide) are described. Furthermore, the reactions of the perfluoroalkyl nitriles with sodium azide in acetonitrile forming sodium 5-trifluoromethyltetrazolate (2a), sodium 5-pentafluoroethyltetrazolate (2b) and sodium 5-heptafluoropropyltetrazolate (2c) were undertaken. The 5-perfluoroalkyltetrazolate salts were characterized using vibrational (Raman and infrared) and multinuclear (13C, 14/15N, 19F) NMR spectroscopy, differential scanning calorimetry, mass spectrometry and elemental analysis. Additionally, the single crystal X-ray structure of the monohydrate of 2a was determined. Crystal data: 2a·H2O: monoclinic, C2/m, a = 18.8588(6) Å, b = 7.1857(2) Å, c = 9.3731(3) Å, β = 102.938(3)°, V = 1237.94(7) Å3, Z = 8, Dcalc = 1.911 g cm−3.  相似文献   

12.
Two di-cadmium-substituted vanadoarsenates, [Cd(enMe)3]2{α-[(enMe)2Cd2As8V12O40(0.5H2O)]}·5.5H2O (1, enMe=1,2-diaminopropane) and [Cd(enMe)2]2{β-[(enMe)2Cd2As8V12O40(0.5H2O)]} (2), were hydrothermally synthesized and characterized by elemental analyses, IR, TGA, UV-Vis, XRD, magnetic measurements and single crystal structural analyses. Crystal data for 1: monoclinic, P2(1)/c, a=15.040(9) Å, b=20.288(12) Å, c=27.873(17) Å, β=98.046(8)°, V=8421.3(19) Å3, Z=4; for 2: monoclinic, P2(1)/n, a=12.753(3) Å, b=19.334(5) Å, c=14.310(3) Å, β=99.984(3)°, V=3475.1(14) Å3, Z=2. X-ray diffraction analyses reveal that compounds 1 and 2 exhibit isolated and one-dimensional inorganic-organic hybrid structures, respectively. The former is the first di-cadmium-substituted vanadoarsenate derived from α-{As8V14O42} shell, while the latter is another kind of di-cadmium-substituted vanadoarsenate derived from β-{As8V14O42} shell. Variable temperature susceptibility measurements demonstrate the presence of antiferromagnetic interactions between VIV cations in 1 and 2.  相似文献   

13.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

14.
Two novel organic-inorganic hybrid compounds based on organoamines and polyoxovanadates formulated as (H2dien)4[H10V18O42(PO4)](PO4)·2H2O (1) (dien=diethylenetriamine) and (Him)8[HV18O42(PO4)] (2) (im=imidazole) have been prepared under hydrothermal conditions by using different starting materials, and characterized by elemental analyses, IR, ESR, XPS, TGA and single-crystal X-ray diffraction analyses. Crystal data for compound 1: C16H74N12O52V18P2, Monoclinic, space group C2/c, a=23.9593(4) Å, b=13.0098(2) Å, c=20.1703(4) Å, β=105.566(3)°, V=6056.6(19) Å3, Z=4; for compound 2, C24H41N16O46V18P, Tetragonal, space group I4/mmm, a=13.5154(8) Å, b=13.5154(8) Å, c=19.1136 Å, β=90°, V=3491.4(3) Å3, Z=2. Compound 1 consists of protonated diens together with polyoxovanadates [H10V18O42(PO4)]5−. Compound 2 is composed of protonated ims and polyoxovanadates [HV18O42(PO4)]8−. There are hydrogen-bonding interactions between polyoxovanadates and different organoamines in 1 and 2. Polyoxovanadates are linked through H2dien into a three-dimensional network via hydrogen bonds in 1, while polyoxovanadates are linked by Him into a two-dimensional layer network via hydrogen bonds in 2. The crystal packing patterns of the two compounds reveal various supramolecular frameworks.  相似文献   

15.
A new flexible disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane (L), which is a mixture of the meso and rac isomers, was treated with CuII or CdII nitrate and obtained dimeric complex [Cu2(L)3(H2O)2(NO3)4] 2 or [Cd2(L)3(H2O)2(NO3)4] 3. In the reacting system the crystals of meso isomer 1 of L together with 2 or 3 were obtained. 2 and 3 have similar molecular structures. In the neutral dimer, three ligands present two kinds of coordination models: monodentate and bis-monodentate. The neutral dimeric units in 2 and 3 are linked by hydrogen bonds to yield a chain structure. Crystal structures of all three compounds were determined by single-crystal X-ray diffraction methods. Crystal data for 1: monoclinic, space group Cc, a=41.95(2), b=5.132(2), c=8.660(4) Å, β=94.898(9)°, V=1857.7(15) Å3, Z=4, final refinement (I>2σ(I)): R1=0.0659, wR2=0.1415. Crystal data for 2: triclinic, space group P-1, a=9.242(4), b=9.539(4), c=21.042(9) Å, α=83.888(9), β=87.971(8), γ=74.177(9)°, V=1774.6(13) Å3, Z=2, final refinement (I>2σ(I)): R1=0.0577, wR2=0.0954. Crystal data for 3: triclinic, space group P-1, a=9.203(4), b=9.831(3), c=20.860(7) Å, α=84.313(6), β=86.432(7), γ=74.188(6)°, V=1805.9(11) Å3, Z=2, final refinement (I>2σ(I)): R1=0.0548, wR2=0.1192.  相似文献   

16.
Two novel heteropolymolybdate, [H2bpy]2 [Hbpy] [PCuMo11O39]·H2O 1 and [H2bpy]2 [Hbpy] [PZnMo11O39]·2.75H2O 2, have been prepared under mild hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the monoclinic space group P2(1)/n (No. 14) with a=13.440(3) Å, b=26.660(5) Å, c=15.240(3) Å, β=99.55(3)°, and Z=4 for the compound 1, and a=13.610(3) Å, b=26.781(5) Å, c=15.205(3) Å, β=100.40(3)°, and Z=4 for the compound 2. Compound 1 and 2 exhibit a zigzag chain structure in which Keggin anions are connected through a common oxygen atom. They are the first characterized compounds containing 1D chains of transition-metal substituted Keggin heteropolymolybdate. Other characterizations by elemental analysis, IR, EPR, TG, and XRPD are also described.  相似文献   

17.
The reaction of Os3(CO)12 with an excess of 1-hydroxypyridine-2-thione and Me3NO gives three mononuclear osmium complexes Os(CO)22-SC5H4N(O))2 (1), Os(CO)22-SC5H4N(O))(η2-SC5H4N) (2), and Os(CO)22-SC5H4N)2 (3). The results of single-crystal X-ray analyses reveal that complex 1 contains two O,S-chelate pyridine-2-thione N-oxide (PyOS) ligands, whereas complex 2 contains one O,S-chelate PyOS and one N,S-chelate pyridine-2-thiolate group. The unique structure of 2 provides evidence of the pathway for this transformation. When this reaction was monitored by 1H NMR spectroscopy the triosmium complexes Os3(CO)10(μ-H)(μ-η1-S-C5H4N(O)) (4) and Os3(CO)9(μ-H)(μ-η12-SC5H4N(O)) (5) were identified as intermediates in the formation of the mononuclear final products 1-3. The proposed pathway is further supported by the observation of several dinuclear osmium intermediates by electrospray ionization mass spectrometry. In addition, the reaction of Os3(CO)12 with 1-hydroxypyridine-2-thione in the absence of Me3NO at 90 °C generated mononuclear complex 2 as the major product along with smaller amounts of complexes 1 and 3. These results suggest that the N-oxide facilitates the decarbonylation reaction. Crystal data for 1: monoclinic, space group C2/c, a = 26.9990(5) Å, b = 7.6230(7) Å, c = 14.2980(13) Å, β = 101.620(2)°, V = 2882.4(4) Å3, Z = 8. Crystal data for 2: monoclinic, space group C2/c, a = 5.7884(3) Å, b = 13.9667(7) Å, c = 17.2575(9) Å, β = 96.686(1)°, V = 1385.69(12) Å3, Z = 4.  相似文献   

18.
The one-pot reactions of ferrocenecarboxaldehyde, W(CO)4(pip)2 (pip = piperidine) and either 2-(aminomethyl)pyridine or 2-(2-aminoethyl)pyridine lead to clean formation of pyridine imine products W(CO)42-NC5H4CHNCH2C5H4FeCp) (1) and W(CO)42-NC5H4C2H4NCHC5H4FeCp) (2), respectively. Crystal structures of the two compounds show that in 1 the imine double bond has migrated so that it is conjugated with the pyridine ring while in 2 the imine double bond remains conjugated with the cyclopentadienyl ring. This finding is reinforced by a comparison of dihedral angles in each molecule. IR, NMR and electronic spectra each highlight the differences between the two compounds. Crystal data for C21H16FeN2O4W (1): monoclinic P2(1)/c, a = 12.768(2) Å, b = 13.593(2) Å, c = 12.981(2) Å, β = 119.46°, V = 1961.6(4) Å3, Z = 4; C22H18FeN2O4W (2): monoclinic P2(1)/c, a = 16.759(1) Å, b = 8.8612(7) Å, c = 13.802(1) Å, β = 95.998(1)°, V = 2038.4(3) Å3, Z = 4.  相似文献   

19.
Two isomeric layered lead(II) carboxylate-phosphonates of N-(phosphonomethyl)-N-methyl glycine ([MeN(CH2CO2H)(CH2PO3H2)]=H3L), namely, monoclinic Pb3L2·H2O 1 and triclinic Pb3L2·H2O 2, have been synthesized and structurally determined. Compound 1 synthesized by hydrothermal reaction at 150°C is monoclinic, space group C2/c with a=19.9872(6), b=11.9333(1) and c=15.8399(4) Å, β=110.432(3)°, V=3540.3(1) Å3, and Z=8. The structure of compound 1 features a 〈400〉 layer in which the lead(II) ions are bridged by both phosphonate and carboxylate groups. The lattice water molecules are located between the layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Compound 2 with a same empirical formula as compound 1 was synthesized by hydrothermal reaction at 170°C. It has a different layer structure from that of compound 1 due to the adoption of a different coordination mode for the ligand. It crystallizes in the triclinic system, space group with cell parameters of a=7.1370(6), b=11.522(1), c=11.950(1) Å, α=110.280(2), β=91.625(2), γ=95.614(2)°, V=915.3(1) Å3 and Z=2. The structure of compound 2 features a 〈020〉 metal carboxylate-phosphonate double layer built from 1D lead(II) carboxylate chains interconnected with 1D lead(II) phosphonate double chains. XRD powder patterns of compounds 1 and 2 indicate that each compound exists as a single phase.  相似文献   

20.
Two novel supramolecular assemblies of organic bicapped Keggin polyoxometalates (pbpy)8H3[PW12O40]·2H2O (1) and (pbpy)4H[PMo12O40(VO)] (2) (pbpy=5-phenyl-2-(4-pyridinyl)pyridine) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Crystallographic data for compound (1), C128H103N16O42PW12, triclinic, space group : a=13.4759(8) Å, b=14.6395(11) Å, c=16.5743(10) Å, α=95.764(2)°, β=102.166(2)°, γ=92.9870(10)°, Z=1, V=3171.1(4) Å3; for compound (2), C64H49N8O41PMo12V, triclinic, space group : a=11.5377(11) Å, b=12.7552(8) Å, c=14.9599(10) Å, α=72.270(4)°, β=88.916(2)°, γ=67.865(4)°, Z=1, V=1931.0(3) Å3. X-ray analyses show that both 1 and 2 represent rare organic bicapped Keggin structures and are supported by supramolecular interactions to extend into a 3D framework. In particular, the unusual structure feature of compound 2 contains a simultaneously organic and inorganic capped structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号