首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures and magnetic properties of double perovskite-type oxides Eu2LnTaO6 (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P21/n. Magnetic susceptibility, specific heat, and 151Eu Mössbauer spectrum measurements show that the Eu2+ ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at ∼4 K, and that Ln3+ ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K.  相似文献   

2.
151Eu and 121Sb Mössbauer spectroscopy of EuSbSe3 and EuBiSe3 were measured at different temperatures. The presence of divalent europium and trivalent antimony were confirmed. The largely negative values of the isomer shift in 151Eu spectrum show highly ionic bonding within these two compounds. Both of them show magnetic hyperfine field splitting at 4.2 K, which indicates a change in the orientation of the EFG principal axis with respect to the magnetic hyperfine field direction. EuSbSe3 has slightly smaller electron density at the antimony nuclei, compared to Sb2Se3.  相似文献   

3.
Using the method to synthesize rare-earth metal(III) fluoride sulfides MFS (M=Y, La, Ce–Lu), in some cases we were able to obtain mixed-valent compounds such as Yb3F4S2 instead. With Eu3F4S2 another isotypic representative has now been synthesized. Eu3F4S2 (tetragonal, I4/mmm, a=400.34(2), c=1928.17(9) pm, Z=2) is obtained from the reaction of metallic europium, elemental sulfur, and europium trifluoride in a molar ratio of 5:6:4 within seven days at 850 °C in silica-jacketed gas-tightly sealed platinum ampoules. The single-phase product consists of black plate-shaped single crystals with a square cross section, which can be obtained from a flux using equimolar amounts of NaCl as fluxing agent. The crystal structure is best described as an intergrowth structure, in which one layer of CaF2-type EuF2 is followed by two layers of PbFCl-type EuFS when sheeted parallel to the (001) plane. Accordingly there are two chemically and crystallographically different europium cations present. One of them (Eu2+) is coordinated by eight fluoride anions in a cubic fashion, the other one (Eu3+) exhibits a monocapped square antiprismatic coordination sphere with four F and five S2− anions. Although the structural ordering of the different charged europium cations is plausible, a certain amount of charge delocalization with some polaron activity has to take place, which is suggested by the black color of the title compound. Temperature dependent magnetic susceptibility measurements of Eu3F4S2 show Curie–Weiss behavior with an experimental magnetic moment of 8.19(5) μB per formula unit and a paramagnetic Curie temperature of 0.3(2) K. No magnetic ordering is observed down to 4.2 K. In accordance with an ionic formula splitting like (EuII)(EuIII)2F4S2 only one third of the europium centers in Eu3F4S2 carry permanent magnetic moments. 151Eu-Mössbauer spectroscopic experiments at 4.2 K show one signal at an isomer shift of −12.4(1) mm/s and a second one at 0.42(4) mm/s. These signals occur in a ratio of 1:2 and correspond to Eu2+ and Eu3+, respectively. The spectra at 78 and 298 K are similar, thus no change in the Eu2+/Eu3+ fraction can be detected.  相似文献   

4.
Na2Mn2(1 − x)Cd2xFe(PO4)3 (0 ≤ x ≤ 1) phosphates were prepared by solid state reaction and characterized by powder X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The X-ray diffraction patterns indicated the formation of a continuous solid solution which crystallizes in the alluaudite structural type characterized by the general formula X(2)X(1)M(1)M(2)2(PO4)3. The cation distribution, deduced from a structure refinement of the x = 0, 0.5 and 1 compositions, is ordered in the X(2) sites and disordered in the remaining X(1), M(1) and M(2) sites. The magnetic susceptibility study revealed an antiferromagnetic behaviour of the studied compounds. The 57Fe Mössbauer spectroscopy confirmed the structural results and proved the exclusive presence of Fe3+ ions.  相似文献   

5.
Single crystals of a new mixed-valent iron phosphate Na1/2Cu4/3Fe2(PO4)3 have been synthesized by a flux method and structurally characterized from X-ray diffraction data. Crystal data: space group ; ; ; ; α=105.881(1)°; β=107.202(1)°; γ=101.467(1)°; Z=2; R1=0.03; wR2=0.093. The three-dimensional structure was found to be closely related to that of the well known Howardevansite structural type. It results from infinite chains of CuO5 and FeO6 polyhedra, joined together by (Cu,□)O6 octahedra and PO4 tetrahedra by corner-sharing. The large cavities in framework are occupied by Na+ ions. The magnetic susceptibility study revealed an antiferromagnetic behavior with Neel temperature of approximately 40 K. The Mössbauer spectroscopy confirmed the presence of iron in both +2 and +3 oxidation states.  相似文献   

6.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

7.
A single crystal of a new sodium calcium iron (III) phosphate, Na4CaFe4(PO4)6, has been synthesized by a flux method and characterized by X-ray diffraction, Mössbauer spectroscopy and magnetic susceptibility measurements. The compound crystallizes in the monoclinic space group C2/c(a=12.099(5) Å, b=12.480(5) Å, c=6.404(2) Å, β=113.77(3)°, Z=2, R1=0.022, Rw2=0.066). The crystal structure belongs to the alluaudite type, characterized by the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The open framework results from Fe2O10 units of edge-sharing FeO6 octahedra, which alternate with M(1)O6 octahedra (M(1)=Na+Ca) that form infinite chains. These chains are linked together through the common corners of PO4 tetrahedra yielding two distinct tunnels of sodium cation occupation. This compound is antiferromagnetic with a Néel temperature of 35 K. Mössbauer parameters are consistent with the structural results.  相似文献   

8.
Polycrystalline GdRhSn was obtained by a reaction of the elements in a sealed tantalum tube in a high-frequency furnace. The sample was investigated by X-ray diffraction on powder and a single crystal: ZrNiAl type, space group , a=752.6(1),c=386.38(6) pm, wR2=0.0353, 454 F2 values and 14 variables. Both crystallographically independent rhodium atoms have a tricapped trigonal prismatic coordination, i.e. [Rh1Sn3Gd6] and [Rh2Sn6Gd3]. The shortest distances occur for the Rh-Sn contacts (274 and 283 pm). Together the rhodium and tin atoms build up a three-dimensional [RhSn] network in which the gadolinium atoms fill distorted hexagonal channels. The magnetic and electronic properties of GdRhSn have been studied by means of magnetic AC and DC susceptibility measurements as well as 119Sn and 155Gd Mössbauer spectroscopy. A transition from a paramagnetic to an antiferromagnetic state with non-collinear magnetic ordering takes place at .  相似文献   

9.
The europium compounds EuTZn (T=Pd, Pt, Au) were synthesized from the elements in sealed tantalum tubes in an induction furnace. These intermetallics crystallize with the orthorhombic TiNiSi-type structure, space group Pnma. The structures were investigated by X-ray diffraction on powders and single crystals: a=732.3(2), b=448.5(2), c=787.7(2) pm, R1/wR2=0.0400/0.0594, 565 F2 values for EuPdZn, a=727.8(3), b=443.7(1), c=781.7(3) pm, R1/wR2=0.0605/0.0866, 573 F2 values for EuPtZn, and a=747.4(2), b=465.8(2), c=789.1(4) pm, R1/wR2=0.0351/0.0590, 658 F2 values for EuAuZn, with 20 variables per refinement. Together the T and zinc atoms build up three-dimensional [TZn] networks with short T–Zn distances. The EuTZn compounds show Curie–Weiss behavior in the temperature range from 75 to 300 K with μeff=7.97(1), 7.70(1), and 7.94(1) μB/Eu atom and θP=18.6(1), 34.9(1), and 55.5(1) K for T=Pd, Pt, and Au, respectively, indicating divalent europium. Antiferromagntic ordering was detected at 15.1(3) K for EuPdZn and canted ferromagnetic ordering at 21.2(3) and 51.1(3) K for EuPtZn and EuAuZn. 151Eu Mössbauer spectroscopic measurements confirm the divalent nature of the europium atoms by isomer shift values ranging from −8.22(8) (EuPtZn) to −9.23(2) mm/s (EuAuZn). At 4.2 K full magnetic hyperfine field splitting is observed in all three compounds due to magnetic ordering of the europium magnetic moments.  相似文献   

10.
PrRhSn was synthesized in polycrystalline form by a reaction of praseodymium, rhodium, and tin in an arc-melting furnace. The sample was investigated by powder and single crystal X-ray diffraction: ZrNiAl type, space group a=742.49(7), c=415.05(5) pm, wR2=0.0737, 353F2 values and 14 variables. The PrRhSn structure has two crystallographically independent rhodium sites with a tricapped trigonal prismatic coordination, i.e. [Rh1Sn3Pr6] and [Rh2Sn6Pr3]. The rhodium and tin atoms build up a three-dimensional [RhSn] network with short Rh-Sn contacts (278 and 285 pm), in which the praseodymium atoms fill distorted hexagonal channels. The magnetic and electronic properties of PrRhSn have been studied by means of AC and DC magnetic susceptibility measurements as well as 119Sn Mössbauer spectroscopy. A transition from a paramagnetic to a ferromagnetic state was found at .  相似文献   

11.
The title compound was prepared from the elements by reaction in a sealed tantalum tube at 1320 K followed by slow cooling to 970 K or, alternatively, in glassy carbon crucibles with HF melting. The crystal structure of Eu5Ga9 was refined from single-crystal data: Cmcm, a=4.613(1) Å, b=10.902(3) Å, c=26.097(6) Å, Z=4, RF=0.036, 811 structure factors and 46 variables. The structure is described as a three-dimensional network formed by gallium atoms with europium atoms embedded in the cavities. The bonding analysis (LMTO, ELF) confirmed this representation of the structure. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with a magnetic moment per Eu atom of 8.12(1) μB, indicating divalent europium. Eu5Ga9 orders antiferromagnetically at 19.0(5) K with re-ordering at 6.0(5) K. The electrical resistivity shows a metallic temperature dependence and magnetic scattering. 151Eu Mössbauer spectroscopic experiments are compatible with divalent europium and show complex magnetic hyperfine field splitting below the ordering temperature.  相似文献   

12.
A new iron titanyl oxyphosphate Fe0.50TiO(PO4) was synthesized by both solid-state reaction and Cu2+-Fe2+ ion exchange method. The material was then characterized by X-ray diffraction, Mössbauer spectroscopy, magnetic susceptibility measurements and Raman spectroscopy. The crystal structure of the compound was refined, using X-ray powder diffraction data, by Rietveld profile method; it crytallizes in the monoclinic system, space group P21/c (No.14), with , , , β=120.36°(1), and Z=4. The volume of the title compound is comparable to those of the M0.50IITiO(PO4) series, where MII=Mg, Co, Ni and Zn. The framework is built up from [TiO6] octahedra and [PO4] tetrahedra. [TiO6] octahedra are linked together by corners and form infinite chains along the c-axis. Ti atoms are displaced from the center of octahedral units showing an alternating short distance (1.73 Å) and a long one (2.22 Å). These chains are linked together by [PO4] tetrahedra. Fe2+ cations occupy a triangle-based antiprism sharing two faces with two [TiO6] octahedra. Mössbauer and magnetic measurements show the existence of iron only in divalent state, located exclusively in octahedral sites with high spin configuration (t2g4eg2). Raman study confirms the existence of Ti-O-Ti chains.  相似文献   

13.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

14.
Mössbauer spectroscopy and neutron diffraction studies have been carried out for the α-Li3Fe2(PO4)3−x(AsO4)x (x=1, 1.5, 2, 3) solid solution, potential candidate for the cathode material of the lithium secondary batteries. The crystal and magnetic structures of all these phases are based on the structural and magnetic model corresponding to the α-Li3Fe2(PO4)3 phosphate parent, but with some differences promoted by the arsenate substitution. The PO4 and AsO4 groups have a random distribution in the structure. In all compounds the coupling of the magnetic moments takes place in the (001) plane, but the value of the angle between the moments and the x direction decreases from 38.3° (α-Li3Fe2(AsO4)3) to 4.7° (α-Li3Fe2(PO4)2(AsO4)1). This rotation arises from the change in the tilt angle between the Fe(1)O6 and Fe(2)O6 crystallographically and magnetically independent octahedra in the structures, and affects the effectiveness of the magnetic exchange pathways. The ordering temperature TN decreases with the increase of phosphate amount in the compounds. The existence of a phenomenon of canting and the evolution of the ferrimagnetic behavior in this solid solution is also discussed.  相似文献   

15.
Polycrystalline EuZrO3 has been synthesized by the solid-state reaction between EuO and ZrO2, and its structural and magnetic properties have been investigated. Rietveld analysis of the X-ray diffraction pattern indicates that EuZrO3 crystallizes in an orthorhombic perovskite structure. 151Eu Mössbauer effect measurement reveals that almost all the europium ions are present as the divalent state and occupy distorted sites with non-axial electric field gradients, in agreement with the orthorhombic structure. In contrast to previous reports, an antiferromagnetic transition was observed around 4.1 K. The magnetic structure below the Néel temperature has been discussed.  相似文献   

16.
Single crystals of a new phosphate KCuFe(PO4)2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P21/n and its parameters are: a=7.958(3) Å, b=9.931(2) Å, c=9.039(2) Å, β=115.59(3)° and Z=4. Its structure consists of FeO6 octahedra sharing corners with Cu2O8 units of edge-sharing CuO5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K+ ions are located. The Mössbauer spectroscopy results confirm the exclusive presence of octahedral Fe3+ ions. The magnetic measurements show the compound to be antiferromagnetic with Cm=5.71 emu K/mol and θ=−156.5 K. The derived experimental effective moment μex=6.76μB is somewhat higher than the theoretical one of μth=6.16μB, calculated taking only into account the spin contribution for Fe3+ and Cu2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations.  相似文献   

17.
The Li1.746Nd4.494FeO9.493 (LNF) ternary phase, located in the Li2O-rich part of the Li2O-Nd2O3-Fe2O3 system, crystallizes with a cubic unit cell of dimension and the space group Im3m. Refinement on F resulted in R=1.9%. The structure is comprised of a network of corners, edges and faces sharing the coordination polyhedra of neodymium. In between this skeleton the regular octahedra of oxygen-coordinated iron and trigonal prisms of lithium are located. The Mössbauer spectra revealed the presence of Fe3+, Fe4+ and Fe5+ ions distributed on two symmetry-independent lattice positions.  相似文献   

18.
57Fe Mössbauer spectroscopy, dc and ac magnetization, specific heat, and differential scanning calorimetry measurements were performed in a powder BiMn0.95Fe0.05O3 sample prepared at 6 GPa and 1383 K. The substitution of 5% Fe for Mn increases the temperatures of the structural monoclinic-to-orthorhombic phase transition (from 768 to 779 K) and the ferromagnetic transition (from 98 to 109 K) by about 10 K in BiMn0.95Fe0.05O3 compared with BiMnO3. On the other hand, the temperature of the monoclinic-to-monoclinic phase transition associated with the orbital ordering strongly decreases in BiMn0.95Fe0.05O3 (414 K) compared with that of BiMnO3 (474 K). The saturated magnetic moment at 5 K and 5 T is also suppressed from 3.92 μB per formula unit in BiMnO3 to 3.35 μB in BiMn0.95Fe0.05O3. The large quadrupole splitting (1.18 mm/s) observed at 293 K in BiMn0.95Fe0.05O3 can be explained by the strong Jahn-Teller distortion and cooperative orbital order. The quadrupole splitting reduces by two times above the orbital melting temperature.  相似文献   

19.
57Fe doped La4Ni2.97Fe0.03O9.95 was synthesized by a citrate method and, afterwards, successfully oxidized and reduced by electrochemical methods. The compounds obtained were investigated by X-ray diffraction, electrical measurements and Mössbauer spectroscopy. The study allowed to follow the variation of the two nickel sites environment with the oxygen stoichiometry and a deeper understanding of the electrical behavior versus oxygen non-stoichiometry was achieved. The Mössbauer study revealed that after both oxidation and reduction treatments, the major modifications were observed on the octahedra adjacent to the La2O2 layers, while the middle octahedra of the triple perovskite block remained almost unchanged. The oxygen intercalation (oxidized treatment) takes place essentially in the La2O2 layers and the oxygen desintercalation (reduction treatment) occurs in the octahedral sites adjacent to those layers.  相似文献   

20.
Multiferroic BiFeO3 has been rapidly synthesized by a microwave – hydrothermal method using nitrates as the metallic source. Structural characterization was performed by thermal analysis, X-ray diffraction and transmission electron microscopy. Generally accepted trigonal space group R3c, as well as recently suggested monoclinic symmetries, were assayed in the search for the best fit. Due to the ambiguity of the Rietveld refinement to distinguish between crystal systems, a micro-diffraction and HRTEM study has been performed. The best solution was obtained with the trigonal model. The room-temperature Mössbauer spectra reveal the presence of a small fraction (2%) of iron in low spin configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号