首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 °C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail.  相似文献   

2.
A novel humidity sensor made up of nano-crystalline zinc oxide (ZnO) film, coated onto the U-shaped typical glass substrate as a wave guide, conjugated with an optical fiber and He-Ne un-polarized laser source. The nano-crystalline zinc oxide (ZnO) was synthesized using single molecular precursor method. The resulting material was characterized with Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric-differential thermal analysis (TG-DTA) and scanning electron microscopy (SEM). In the thin film, ZnO particles exhibited the wurtzite phase structure with the particle size in a diameter range of 70-80 nm. The humidity sensing characteristic has been estimated by measuring the optical permeability (OP) as a function of percentage relative humidity (%RH) in the ranging from 5 to 90 inside a closed chamber. The OP decreases linearly with increase in %RH with a respond time of about 30 and recovery time of 35 s. The sensor exhibits the sensitivity of 0.45 in the %RH range 5-50 and 0.30 from 50 to 90.  相似文献   

3.
Highly oriented ZnO nanorod arrays with controlled diameter and length, narrow size distribution and high orientation consistency have been successfully prepared on ITO substrates at different growth temperatures by using a simple hydrothermal method. XRD results indicate that the nanorods are high-quality single crystals growing along [001] direction with a high consistent orientation perpendicular to the substrate. SEM images show that the nanorods have average diameters of about 30-70 nm by changing growth temperature. The thin films consisting of ZnO nanorods with controlled orientation onto ITO substrates allow a more efficient transport and collection of photogenerated electrons through a designed path. For a sandwich-type cell, the relatively high overall solar energy conversion efficiency reaches about 2.4% when the growth temperature is at 95 °C.  相似文献   

4.
一种在固体基底上制备高度取向氧化锌纳米棒的新方法   总被引:8,自引:1,他引:8  
郭敏  刁鹏  蔡生民 《化学学报》2003,61(8):1165-1168
采用廉价、低温的方法,在修饰过ZnO纳米粒子膜的ITO基底上成功制备出具有 高长径比、高度取向的ZnO纳米棒阵列,用扫描电子显微镜(SEM),X射线衍射(XRD) ,高分辨透射电子显微镜(HRTEM)以及拉曼光谱对制备出的ZnO纳米棒的结构和形貌 进行了表征,测试结果表明,ZnO纳米棒是单晶,属于六方晶系,与基底直,上仍 沿(001)晶面择优生长的特征,并且ZnO纳米棒基本上无氧空位的存在,统计结果显 示,水热反应2h后90%以上的ZnO纳米棒直径为120~190nm,长度为4μm  相似文献   

5.
Nano- and submicrometer zinc(II) oxide particles were synthesized by the polyol method and were used for the preparation of ZnO/poly(methyl methacrylate) (ZnO/PMMA) composite materials by the chain polymerization of methyl methacrylate (MMA) in bulk. ZnO particles with an organophilic surface layer were homogeneously dispersed in the PMMA matrix. Very low concentrations (0.1 wt.%) of nano zinc oxide absorbed over 98% of UV light as determined by UV-vis spectroscopy. Nano zinc oxide (75 nm) increased the initial decomposition temperature of the PMMA matrix by 30-40 °C at concentrations of 0.1% and above. This was explained by the changes in the termination mechanism of MMA polymerization resulting in a reduced concentration of vinylidene chain ends. Nano ZnO also increased the MMA polymerization reaction rate and reduced the activation energy. Submicrometer ZnO showed lower UV absorption, thermal stabilization and no influence on the reaction kinetics indicating that average particle size is of vital importance for the properties of PMMA nanocomposites and for MMA polymerization.  相似文献   

6.
Meso-porous zinc oxide films were prepared on tin-doped indium oxide-coated, polyethelene naphthalate substrates from binder-free ZnO slurry. The reaction with ammonium hydroxide was found to increase connection between ZnO grains by forming a nano-rod like structure followed by heating at 150 °C. The enhancement of adhesion among ZnO grains was evaluated using a nano-scratch technique. Two different xanthene dyes were used to sensitize ZnO electrodes, with a photo-voltage of 657 mV, fill-factor of 73% and photo-current of 4.1 mA cm−2 with a maximum light to-electrical energy conversion efficiency of 2.0% being obtained for the plastic based ZnO|mercurochrome|electrolyte solar cell under 1 sun.  相似文献   

7.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

8.
In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.  相似文献   

9.
We present a simple, easy and reproducible method to systematically control the dimension and shape evolution of zinc oxide (ZnO) as thin film on glass substrate by chemical bath deposition (CBD). The only varying factor to control crystal transformation is the molar ratio of Cd2+/Zn2+, Rm, in the initial chemical solution. With the increase of Rm, ZnO crystals transformed from long-and-slim hexagonal rods to fat-and-short hexagonal pyramids, and then to twinning hexagonal dots as observed by scanning electron microscopy (SEM). Film crystallinity was characterized by X-ray diffraction (XRD). Chemical component analysis by energy dispersive spectroscopy (EDS) showed that most cadmium was present in the residual solution instead of the developed film and the precipitate at the bottom of beaker. The mechanism of the cadmium effect, with different initial concentrations, on ZnO crystal transformation was tentatively addressed. We believe that cadmium influences the chelate ligands adsorption onto plane of ZnO crystals, alters the crystal growth orientation, and thus directs the transformation of the size and shape of ZnO crystals.  相似文献   

10.
Khan SB  Faisal M  Rahman MM  Jamal A 《Talanta》2011,85(2):943-949
Well-crystalline ZnO nanoparticles (NPs) were synthesized in large-quantity via simple hydrothermal process using the aqueous mixtures of zinc chloride and ammonium hydroxide. The detailed structural properties were examined using X-ray diffraction pattern (XRD) and field emission scanning electron microscope (FESEM) which revealed that the synthesized NPs are well-crystalline and possessing wurtzite hexagonal phase. The NPs are almost spherical shape with the average diameters of ∼50 ± 10 nm. The quality and composition of the synthesized NPs were obtained using Fourier transform infrared (FTIR) and electron dispersed spectroscopy (EDS) which confirmed that the obtained NPs are pure ZnO and made with almost 1:1 stoichiometry of zinc and oxygen, respectively. The optical properties of ZnO NPs were investigated by UV-vis absorption spectroscopy. Synthesized ZnO NPs were extensively applied as a photocatalyst for the degradation of acridine orange (AO) and as a chemi-sensor for the electrochemical sensing of acetone in liquid phase. Almost complete degradation of AO has taken place after 80 min of irradiation time. The fabricated acetone sensor based on ZnO NPs exhibits good sensitivity (∼0.14065 μA cm−2 mM−1) with lower detection limit (0.068 ± 0.01 mM) in short response time (10 s).  相似文献   

11.
V含量对ZnO薄膜结构及光学特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
0引言氧化锌是一种六角纤锌矿结构的直接宽带隙半导体,其室温下禁带宽度为3.37eV。它具有多种优良的物理性能,在声表面波[1,2]、透明电极[3,4]、光电材料[5]、蓝光器件[6]等方面都有较大的应用潜力。氧化锌价格低廉,不仅能制成良好的半导体和压电薄膜,亦能够制成良好的透明导电薄膜。理论计算表明[7],氧化锌掺杂V、Cr、Fe、Co、N i元素能够产生自旋极化,形成高于室温的稀磁性透明半导体,是下一代微电子和光电子领域自旋电子学器件有重要价值的材料之一。根据理论计算,V掺杂的ZnO膜具有最高的居里温度。V yatkin实验小组[8]用钒离子注入…  相似文献   

12.
The synthesis, characterization and proposed growth process of a new kind of comet-like Au-ZnO superstructures are described here. This Au-ZnO superstructure was directly created by a simple and mild solvothermal reaction, dissolving the reactants of zinc acetate dihydrate and hydrogen tetrachloroaurate tetrahydrate (HAuCl4·4H2O) in ethylenediamine and taking advantage of the lattice matching growth between definitized ZnO plane and Au plane and the natural growth habit of the ZnO rods along [001] direction in solutions. For a typical comet-like Au-ZnO superstructure, its comet head consists of one hemispherical end of a central thick ZnO rod and an outer Au-ZnO thin layer, and its comet tail consists of radially standing ZnO submicron rod arrays growing on the Au-ZnO thin layer. These ZnO rods have diameters in range of 0.2-0.5 μm, an average aspect ratio of about 10, and lengths of up to about 4 μm. The morphology, size and structure of the ZnO superstructures are dependent on the concentration of reactants and the reaction time. The HAuCl4·4H2O plays a key role for the solvothermal growth of the comet-like superstructure, and only are ZnO fibers obtained in absence of the HAuCl4·4H2O. The UV-vis absorption spectrum shows two absorptions at 365-390 nm and 480-600 nm, respectively attributing to the characteristic of the ZnO wide-band semiconductor material and the surface plasmon resonance of the Au particles.  相似文献   

13.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

14.
Undoped zinc oxide nanoparticles and Mn (5 atomic % & 10 atomic %) doped zinc oxide nanoparticles were prepared by soft chemical method. Antibacterial, antioxidant and anticancer activities in breast cancer cell line MDAMB231 of prepared nanoparticles were investigated. The nanoparticles were characterized using XRD, SEM, EDAX, UV–Vis, FT-IR, and room temperature PL Analysis. Antimicrobial activity was tested against both gram positive and gram negative human pathogens. The antioxidant potential of prepared nanoparticles was estimated using Phosphomolybdate and DPPH assay. The MTT assay was used for cytotoxicity evaluation of prepared nanoparticles against breast cancer cell line MDAMB231. XRD patterns confirmed the nanoparticles were crystallized hexagonal wurtzite structure with an average size of 38.95 ?nm. The absorption wavelength was observed at 361 ?nm in UV–Vis spectrum of Mn (10 atomic %) doped ZnO nanoparticles. The Mn (5 atomic %) doped ZnO nanoparticles exhibited significant antibacterial activity against the gram negative bacteria Escherichia coli, Klebsiella pneumonia at all concentrations. Undoped zinc oxide nanoparticles and Mn doped zinc oxide nanoparticles were effective against the breast cancer cell line MDAMB231.  相似文献   

15.
Ce-Zn-O mixed oxides were prepared by amorphous citrate process and decomposition of the corresponding acetate precursors. The resulting materials were characterised by TGA, XRD, UV-Vis-DRS, EPR, SEM and surface area measurements. XRD and DRS results indicated fine dispersion of the ceria component in the ZnO matrix. EPR results clearly indicate the presence of oxygen vacancy and defect centres in the composite oxide. Addition of CeO2 to ZnO produced mixed oxides of high surface area compared to the pure ZnO. Hydrogen transfer reaction was carried out on these catalytic materials to investigate the effect of rare earth oxide on the activity of ZnO. Addition of ceria into zinc oxide was found to increase the catalytic activity for hydrogen transfer reaction. The catalytic activity also depended on the method of preparation. Citrate process results in uniformly dispersed mixed oxide with higher catalytic activity. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

16.
The co-deposition of cuprous oxide (Cu2O) and zinc oxide (ZnO) on indium tin oxide (ITO) substrate was executed by two different electrochemical methods and the formation mechanism of ZnO onto Cu2O was investigated by ex-situ SEM, XRD, and XPS. The single galvanostatic electrodeposition step in a mixed nitrate electrolyte offered a useful method in preparing ZnO onto triangular Cu2O islands formed. On the other hand, hexagonal shaped ZnO phase was electrodeposited on ITO substrate as well as on Cu2O islands when two steps of the galvanostatic and potentiostatic process were applied.  相似文献   

17.
Gallium-doped zinc oxide (ZnO:Ga 1, 2, 3, 4 and 5 at%) samples were prepared in powder form by modifying the Pechini method. The formation of zinc gallate (ZnGa2O4) with the spinel crystal structure was observed even in ZnO:Ga 1 at% by X-ray diffraction. The presence of ZnGa2O4 in ZnO:Ga samples was also evidenced by luminescence spectroscopy through its blue emission at 430 nm, assigned to charge transfer between Ga3+ at regular octahedral symmetry and its surrounding O2− ions. The amount of ZnGa2O4 increases as the dopant concentration increases, as observed by the quantitative phase analysis by the Rietveld method.  相似文献   

18.
高度c轴取向的ZnO膜的低温水热法制备   总被引:1,自引:0,他引:1       下载免费PDF全文
在预先镀有ZnO纳米层的(0001)蓝宝石衬底上利用低温水热法制备出ZnO薄膜。SEM和XRD显示此ZnO膜是由六棱柱状阵列构成的,基于蓝宝石衬底生长,具有高度的c轴择优取向,且(0004)摇摆曲线的FWHM达到1.8°。并发现了在水热溶液中加入一定量六次甲基四胺可以调节六棱柱状ZnO尺寸比例。  相似文献   

19.
Thin films of cadmium doped zinc oxide rod like microstructure have been synthesized by a very simple sol-gel dip coating technique. Sols were prepared from hydrated zinc oxide precursor and 2-methoxyethanol solvent with monoethanolamine as a sol stabilizer. XRD pattern confirmed the hexagonal wurtzite structure of the deposited ZnO films. Surface morphologies of the films have been studied by a scanning electron microscope and an atomic force microscope, which confirmed that the films are composed of densely packed randomly oriented nano/submicron rods with diameter in the range 300–400 nm having various lengths. We proposed a possible growth mechanism for this rodlike structure. X-ray photoelectron spectroscopic study was used to determine the binding energies and the Zn 2p3/2, Cd 3d5 and O 1s peaks in the XPS spectra were located at 1021.08 eV, 404.6 eV and 529.8 eV respectively, which confirmed the Cd doping in ZnO. Cadmium content in the film was estimated both from energy dispersive X-ray analysis and XPS measurement. Band gap energy determined from optical transmittance spectra systematically varied from 3.28 eV to 3.15 eV for 0% to 5.6% of Cd doping. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with doping percentage and this parameter for a fixed cadmium doping level decreased with increase of temperature.  相似文献   

20.
采用电化学恒电位沉积方法在ITO导电玻璃上和在ZnO薄膜上沉积氧化亚铜(Cu2O),并通过X射线衍射(XRD)和扫描电镜(SEM)对晶体的微观结构和表面形貌进行了分析.在ZnO基底上沉积得到了纳米级的Cu2O粒子并且具有明显择优取向,而在ITO导电玻璃上仅得到粒径为2—5μm的Cu2O粒子,没有明显的择优取向.对薄膜的生长机理进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号