首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrates solution with ammonium carbonate results in dawsonite (NH4Al(OH)2CO3). Its crystallographic parameters differ from the compound precipitated without the yttrium additive. It indicates that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray measurements show decomposition of dawsonite at elevated temperature resulting in γ-Al2O3 which transforms to δ and θ modifications at still higher temperatures. The full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1,230 °C.  相似文献   

2.
Treatment of Mg–Al hydrotalcites (LDHs, layered double hydroxides) in aqueous (NH4)2CO3 at 298 K leads to composites of dawsonite, hydrotalcite, and magnesium ammonium carbonate. The mechanism and kinetics of this transformation, ultimately determining the relative amounts of these components in the composite, depend on the treatment time (from 1 h to 9 days), the Mg/Al ratio in the hydrotalcite (2-4), and on the starting layered double hydroxide (solid or delaminated form). The materials at various stages of the treatment were characterized by inductive coupled plasma-optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, thermogravimetry, and nitrogen adsorption at 77 K. The progressive transformation of hydrotalcite towards crystalline dawsonite and magnesium ammonium carbonate phases follows a dissolution–precipitation mechanism. A gradual decrease of the Mg/Al ratio in the resulting solids was observed in time due to magnesium leaching in the reacting medium. Dawsonite–hydrotalcite composite formation is favored at high aluminum contents in the starting hydrotalcite, while the formation of magnesium ammonium carbonate is favored at high Mg/Al ratios. The synthetic strategy comprising hydrotalcite delamination in formamide prior to aqueous (NH4)2CO3 treatment is more reactive towards composite formation than starting from the bulk solid hydrotalcite.  相似文献   

3.
Dawsonite-type compounds of formula MAl(OH)2CO3 (M = Na. K, NH4) as well as a laminar hydrotalcite-type hydroxycarbonate of composition [Al2Li(OH)6]2CO3·4H2O. have been hydrothermally synthesized The thermal decomposition of these compounds was monitored by DTA and TG, and the resulting products have been studied by X-ray and IR techniques. Sodium and potassium dawsonites are destroyed at 335°C. yielding a poorly crystalline compound in which part of the overall carbonate is present; the remaining carbonate is lost between 600 and 700°C, yielding NaAlO2 and KAlO2, respectively Ammonium dawsonite and lithium hydrotalcite are less stable, their thermal decomposition occurring at about 240°C. The ammonium dawsonite heated at 680°C shows the presence of A12O3 with a poorly ordered structure, while lithium hydrotalcite yields poorly crystalline γ-Al2O3 at 500°C and a mixture of γ-LiAlO2 and LiAl5O8 when the compound is heated at higher temperatures ( ~ 1000°C).  相似文献   

4.
Barium carbonate (BaCO3) particles have been obtained by the precipitation reaction of CO2 bubbles to barium hydroxide [Ba(OH)2] in the ethanol–water mixed solvents. Various morphologies, from rounded peanut, leaf-like, rod, and needle particles, were controlled by the precipitation step, where CO2 gas was fed to Ba(OH)2 in ethanol–water mixed solvent. The CO2 gas as a carbonate source and Ba(OH)2 slurry as a barium ion source are dissolved in the mixed solvents, within the solubility limit, to precipitate. The reactants dissolve progressively while they precipitate to BaCO3. Ba(OH) 2 slurry becomes translucent and opaque while the reaction proceeds. It becomes more opaque, upon which the dissolution of Ba(OH)2 proceeds and BaCO3 precipitates. The opaqueness of the products depends on the particle size of BaCO3 in the product. The characteristics of BaCO3 were confirmed by the X-ray diffraction (XRD), transmission electron microscope (TEM), and electrophoretic light scattering methods. The amount of water in the mixed solvents and of Ba(OH) 2 in the reaction batch is related to the reaction rate in the nucleation and growing step, so that it was possible to control the shape of particles. Based on the understanding of the size and morphology of BaCO3 in the solid/liquid–gas system, it was possible to obtain a well-dispersed average 40-nm BaCO3 colloid.  相似文献   

5.
Dispersive ZnO nanoparticles with a primary particle size of about 70 nm and an average agglomerate size of about 2.0 ??m were synthesized via the precipitation-thermal decomposition route using ZnSO4 and Na2CO3 as the reactants and sodium dodecyl sulfate (SDS) as the surface modification agent. The presence of minor amounts of SDS in the formation of hydrozicite (Zn5(CO3)2(OH)6) precursor changed the agglomeration size of ZnO from 9.7 to 2.0 ??m and the primary particle size of ZnO from about 45 to 70 nm. Molecular simulation based on the DISCOVER model and COMPASS force field indicated that SDS was adsorbed on the surface of Zn5(CO3)2(OH)6 mainly via the coulomb and hydrogen bond interactions.  相似文献   

6.
The effect of ethylene glycol (EG) on the formation of whiskers and fibers of complex oxides with the general formula MCo2O4 upon the thermolysis of M1/3Co2/3C2O4 (M = Zn, Mn) oxalates has been studied. New compounds (solvates) are formed when powdered oxalates are heated with EG. In the solvates, EG molecules substitute for water molecules according to the reaction M1/3Co2/3C2O4 · 2H2O + HOCH2CH2OH = M1/3Co2/3C2O4(HOCH2CH2OH) + 2H2O. The solvates have been characterized using X-ray powder diffraction, microscopy, IR spectroscopy, thermogravimetry, and chemical analysis. The shape, structure, and particle size of the thermolysis products of EG-modified oxalates have been determined using scanning electron microscopy.  相似文献   

7.
A new route for synthesis of Mg/Al layered double hydroxide (Mg6Al2(OH)16(CO3)·4H2O) has been introduced, which can be considered as a modified calcination-rehydration method. Under the hydrothermal conditions, LDHs with a high aspect ratio were synthesized and characterized by inductively coupled plasma-atom emission spectrometer (ICP-AES), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal measurement (TG-DTG) and scanning electron microscopy (SEM). XRD patterns display the crystalline enhanced with the increase of hydrothermal temperature and aging time. TG-DTG curves show the more stable LDHs were synthesized at higher temperature. SEM images indicate the lateral size of the synthesized LDHs locates at ca. 1-6 μm and the thickness at ca. 35-60 nm. And the particle size depends strongly on the treatment temperature and aging time. A buffer solution consisted of HCO3 and CO32− keeps the pH of reaction system in a certain range and offers a low supersaturated reaction circumstance. This is of high importance for the formation of LDHs with a high aspect ratio.  相似文献   

8.
It is shown that the morphology of nanoparticles based on variable-composition compounds (Mg,Al)3(Si,Al)2O5(OH)4 can be controlled by varying the content of aluminum, x Al. Nanoparticles with both tubular (x Al = 0 mol %) and plate-like (x Al = 5 mol %) morphologies were obtained by synthesis of nanoparticles under hydrothermal conditions at 350°C and 30 MPa in an aqueous solution of 0.5 M NaOH. A calculation analysis of the existence conditions of the tubular and plate-like forms of (Mg,Al)3(Si,Al)2O5(OH)4 compounds was made. The tubular morphology can be potentially obtained in a wider range of xAl values than that observed in the experiment.  相似文献   

9.
Y2O3 sheets, rods, needles and tubes were synthesized from three precursors through hydrothermal reactions followed by calcination. The phase distribution and decomposition behaviors of the three precursors, Y2(OH)5.14(NO3)0.86·H2O, Y4O(OH)9(NO3) and hexagonal Y(OH)3, were investigated. The reaction temperature and initial pH value during the hydrothermal reaction showed great influence on the shape and particle size of the products. The precursors were converted to Y2O3 particles with the retained original morphology of the precursors.  相似文献   

10.
Layered double hydroxides (LDHs) serve a score of applications in catalysis, drug delivery, and environmental remediation. Smarter crystallography, combining X-ray diffraction and NMR spectroscopy revealed how interplay between carbonate and pH determines the LDH structure and Al ordering in ZnAl LDH. Carbonate intercalated ZnAl LDHs were synthesized at different pH (pH 8.5, pH 10.0, pH 12.5) with a Zn/Al ratio of 2, without subsequent hydrothermal treatment to avoid extensive recrystallisation. In ideal configuration, all Al cations should be part of the LDH and be coordinated with 6 Zn atoms, but NMR revealed two different Al local environments were present in all samples in a ratio dependent on synthesis pH. NMR-crystallography, integrating NMR spectroscopy and X-ray diffraction, succeeded to identify them as Al residing in the highly ordered crystalline phase, next to Al in disordered material. With increasing synthesis pH, crystallinity increased, and the side phase fraction decreased. Using 1H−13C, 13C−27Al HETCOR NMR in combination with 27Al MQMAS, 27Al-DQ-SQ measurements and Rietveld refinement on high-resolution PXRD data, the extreme anion exchange selectivity of these LDHs for CO32− over HCO3 was linked to strict Al and CO32−ordering in the crystalline LDH. Even upon equilibration of the LDH in pure NaHCO3 solutions, only CO32− was adsorbed by the LDH. This reveals the structure directing role of bivalent cations such as CO32− during crystallization of [M2+4M3+2(OH)2]2+[A2−]1⋅yH2O LDH phases.  相似文献   

11.
A novel, very simple and effective synthetic method for the formation of alkylaluminum complexes with terminal hydroxy group via hydrolysis of cyclopentadienylaluminum compounds has been found. Investigations of the hydrolysis of cyclopentadienylaluminum complexes (L)Al(Me)Cp (1) and (L)Al(Et)Cp (2) (L = HC[(CMe)(2,6-iPr2C6 H3N)]2) have shown that the reaction leads to the formation of (L)Al(Me)OH (3) and (L)Al(Et)OH (4), respectively. The high selectivity of the hydrolysis was revealed. The crystal structures of 1, 2 and 4 were determined.  相似文献   

12.
Superhydrophobic nanocalcite crystals were prepared via an adjusted aqueous reaction of CaO, CO2 gas and sodium oleate. Box–Behnken design was used to optimize the preparation parameters such as CaO concentration, CO2 gas flow rate and surfactant concentration. The results revealed that the produced CaCO3 is indexed to the calcite phase. The crystallite size, particle size, morphology, hydrophobicity and surface charge of CaCO3 are significantly affected by changing the preparation parameters. The addition of sodium oleate helps in reducing the crystallite size from 101 nm to 48 nm, reducing the particle size from 1.5 μm length scalenohedral particles to 40 nm rhombohedral particles and modifying the properties of pure CaCO3 from highly hydrophilic to superhydrophobic.  相似文献   

13.
Various hierarchical micro/mesoporous MOFs based on {[Al(μ-OH)(1,4-NDC)]⋅H2O} ( MOF1 ) with tunable porosities (pore volume and surface area) have been synthesized by assembling AlIII and 1,4-NDC (1,4-naphthalenedicarboxylate) under microwave irradiation by varying water/ethanol solvent ratio. Water/ethanol mixture has played a crucial role in the mesopore generation in MOF1M25 , MOF1M50 , and MOF1M75 , which is achieved by in situ formation of water/ethanol clusters. By adjusting the ratio of water/ethanol, the particle size, surface area and micro/mesopore volume fraction of the MOFs are controlled. Furthermore, reaction time plays a critical role in mesopore formation as realized by varying reaction time for the MOF with 50 % ethanol ( MOF1M50 ). Additionally, hierarchical MOF ( MOF1M50 ) has been used as a template for the stabilization of MAPbBr3 (MA=methylammonium) perovskite quantum dots (PQDs). MAPbBr3 PQDs are grown inside MOF1M50 , where mesopores control the size of PQDs which leads to quantum confinement.  相似文献   

14.
A number of D3h symmetric bicyclocalix[2]arene[2]triazine core compounds were synthesized via a general and good-yielding (43–48% yield) facile protocol starting from cyanuric halides, phloroglucinol and K2CO3 under very mild reaction conditions. These cage-like compounds are tolerante with different reaction conditions and can be derived with other functional groups in high yields. The X-ray crystal structures show these compounds have slightly distorted D3h symmetric structures. Due to the unique molecular topological structure, bicyclocalix[2]arene[2]triazine molecules form unique layered comb networks when hydrogen bond groups exist (such as CO2H, B(OH)2), which represent a new kind of building block unit for supramolecular architectures.  相似文献   

15.
Ni-Al hydrotalcite derived catalyst (Ni-Al2O3-HT) exhibited a narrow Ni particle-size distribution with an average particle size of 4.0 nm. Methanation of CO2 over this catalyst initiated at 225 °C and reached 82.5% CO2 conversion with 99.5% CH4 selectivity at 350 °C, which was much better than its impregnated counterpart. Characterizations by means of CO2 microcalorimetry and 27Al NMR indicated that large amount of strong basic sites existed on Ni-Al2O3-HT, originated from the formation of Ni-O-Al structure. The existence of strong basic sites facilitated the activation of CO2 and consequently promoted the activity. The combination of highly dispersed Ni with strong basic support led to its unique and high efficiency for this reaction.  相似文献   

16.
A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5–5.0) in the starting materials. An increase in the Tht (20–80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.  相似文献   

17.
《中国化学快报》2020,31(10):2712-2716
The heterogeneous reaction of SO2 on mineral dust surfaces is generally considered as an important chemical pathway for secondary sulfate formation in the troposphere. To this day, there are no reported studies that assess the impact of atmospheric CO2 in sulfate production on mineral dust surfaces. In this work, we investigate the impact of CO2 on SO2 uptake on dust proxy aluminum oxide particles using a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). CO2 is demonstrated to suppress the heterogeneous oxidation of SO2 on alpha-Al2O3. Compared to that measured in the CO2-free case, the uptake coefficient is decreased by nearly 57% when Al2O3 particles are exposed to the gas flow with atmospheric CO2 at a relative humidity (RH) of 25%. It is also found that there is a balance between the yield of active moiety −OH provided by Al(OH)3(CO)(OH)2 clusters and the loss of basic hydroxyl group on aluminum oxide surfaces blocked by CO2-derived (bi)carbonate species. This work, for the first time, reveals a negative effect of atmospheric CO2 on the sulfate formation, which potentially decreases solar-radiation scattering and further exacerbates global warming.  相似文献   

18.
Two types of layered hydroxide zinc m‐aminobenzoate compounds with structures of layered basic metal salt (LBMS) were prepared by the reaction of zinc hydroxide with m‐aminobenzoic acid solution in the temperature range of 40–120°C. The formation reactions, structures, chemical compositions, and exfoliation reactions of the layered compounds in alcohol solvents were investigated by XRD, TG‐DTA, SEM, and TEM. One layered phase with a basal spacing of 1.08 nm has a α‐Ni(OH)2‐like structure, and its chemical formula can be written as Zn(OH)0.67(m‐NH2C6H4COO)1.33. This phase has strip‐like particle morphology and cannot be exfoliated into its nanosheets in alcohol solvents. The other layered phase with a basal spacing of 2.66 nm has a zinc hydroxide‐nitrate‐like structure, and can be exfoliated in alcohol solvents.  相似文献   

19.
The reaction scheme of thermal decomposition for four zinc hydroxynitrates was investigated by means of differential scanning calorimetry, thermogravimetry, mass spectrometry, and radiocrystallography. The thermal transformation of Zn(OH)(NO3) · H2O and of Zn3(OH)4(NO3)2 involves the formation of gaseous water and nitric acid from an actual chemical reaction. This reaction is not observed for Zn5(OH)8(NO3)2 · 2H2O and Zn5(OH)8(NO3)2. These results show that the formation of gaseous nitric acid molecules inside the solids is specific to hydroxynitrates of divalent metals M, whose lamellar crystalline structure is characterized by a stacking of hexagonal close-packed layers of formula MX2+m, where m = 0 or 1 and X = OH?, H2O, or NO?3.  相似文献   

20.
Organic–inorganic hybrid composites of epoxy and phenyltrisilanol polyhedral oligomeric silsesquioxane (Ph7Si7O9(OH)3, POSS-triol) were prepared via in situ polymerization of epoxy monomers. The nanocomposites of epoxy with POSS-triol can be prepared in the presence of metal complex latent catalyst, aluminum triacetylacetonate ([Al]) for the reaction between POSS-triol and diglycidyl ether of bisphenol A (DGEBA). The dispersion morphology of organic–inorganic hybrid was characterized by scanning electronic microscopy (SEM). The thermostability of composites was evaluated by thermal gravimetric (TG) analysis. The flammability was evaluated by cone calorimeter test. The presence of [Al] latent catalyst leads to a decrease in combustion rate with respect to epoxy and epoxy/POSS composites as well as reduction in smoke, CO and CO2 production rate. The effect of [Al] is to reduce the size of spherical POSS particles from 3–5 μm in epoxy/POSS to 0.5 μm in epoxy/POSS[Al]. Furthermore, POSS with smaller size may form compact and continue char layer on the surface of composites more efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号