首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new ternary antimonide SrLiSb has been synthesized and characterized using single-crystal X-ray studies. It is found to crystallize in the anti-PbCl2 structure type with orthorhombic cell (centrosymmetric S.G., Pnma; , , ) and is isostructural to its calcium analogue (CaLiSb). However, BaLiSb has been reported to crystallize in the hexagonal space group P63/mmc. As in the Ca and Ba analogues, antimony is present as isolated Sb3− ions making SrLiSb electron precise and hence is expected to behave as a classical Zintl compound. The magnetic susceptibility measurements show the diamagnetic nature and the conductivity is temperature independent, both verifying the classical Zintl nature of SrLiSb.  相似文献   

2.
Reported are the flux synthesis, the crystal structure determination, the properties and the band structure calculations of a new polymorph of CaGe2, which crystallizes with the hexagonal space group P63mc (no. 186) with cell parameters of a=3.9966(9) and c=10.211(4) Å (Z=2; Pearson's code hP6). The structure can be viewed as puckered layers of three-bonded germanium atoms, , which are stacked along the direction of the c-axis in an ABAB-fashion. The germanium polyanionic layers are separated by the Ca cations. As such, this structure is closely related to the structure of the other CaGe2 polymorph, which crystallizes with the rhombohedral CaSi2 type in the Rm space group (No. 166), where the layers are arranged in an AABBCC′-fashion, and are also interspaced by Ca2+ cations. LMTO calculations suggest that in spite of the formal closed-shell configuration for all atoms and the apparent adherence to the Zintl rules for electron counting, i.e., Ca2+[3b-Ge1−]2), the phase will be a poor metal due to a small Ca-3d-Ge-4p band overlap. Magnetic susceptibility measurements as a function of the temperature indicate that the new CaGe2 polymorph exhibits weak, temperature independent, Pauli-paramagnetism.  相似文献   

3.
A novel non-centrosymmetric borate, BiCd3(AlO)3(BO3)4, has been prepared by solid state reaction methods below 750 °C. Single-crystal XRD analysis showed that it crystallizes in the hexagonal group P63 with a=10.3919(15) Å, c=5.7215(11) Å, Z=2. In its structure, AlO6 octahedra share edges to form 1D chains that are bridged by BO3 groups through sharing O atoms to form the 3D framework. The 3D framework affords two kinds of channels that are occupied by Bi3+/Cd2+ atoms only or by Bi3+/Cd2+ atoms together with BO3 groups. The IR spectrum further confirmed the presence of BO3 groups. Second-harmonic-generation measurements displayed a response of about 0.5×KDP (KH2PO4). UV-vis diffuse reflectance spectrum showed a band gap of about 3.19 eV. Solid-state fluorescence spectrum exhibited the maximum emission peak at around 390.6 nm. Band structure calculations indicated that it is an indirect semiconductor.  相似文献   

4.
A new rare-earth rich Zintl phase Yb11GaSb9 was synthesized by direct fusion of the corresponding elements, and large single crystals of the compound were obtained from high temperature flux synthesis. Its crystal structure was determined by single-crystal X-ray diffraction to be orthorhombic in the non-centrosymmetric space group Iba2 (No. 45), Z=4 (R1=3.24%, wR2=6.40%) with , , measured at 90(3) K. The structure belongs to the Ca11InSb9-type and can be viewed as built of isolated Sb4-tetrahedra centered by Ga, Sb-dimers and isolated Sb anions, which are separated by Yb2+ cations. Electron count according to the Zintl formalism suggests that the phase is electron-precise and charge-balanced, which is supported by the virtually temperature-independent magnetization for Yb11GaSb9. Electrical resistivity data from 2 to 400 K confirm that Yb11GaSb9 is a small band-gap semiconductor with room temperature resistivity , and low-temperature resistivity at 2 K . As such, Yb11GaSb9 and related compounds might be promising materials for thermoelectric applications, and currently, efforts to synthesize new members of this family and test their thermoelectric performance are under way.  相似文献   

5.
The novel compound Ca2Co1.6Ga0.4O5 with brownmillerite (BM) structure has been prepared from citrates at 950 °C. The crystal structure of Ca2Co1.6Ga0.4O5 was refined, from neutron powder diffraction (NPD) data, in space group Pnma, , , , χ2=1.798, , Rwp=0.0378 and Rp=0.0292. On the basis of the NPD refinement the compound was found to be a G-type antiferromagnet (space group Pnma) at room temperature, with the magnetic moments of cobalt atoms directed along chains of tetrahedra in the BM structure. Electron diffraction and electron microscopy studies revealed disorder in the crystallites, which can be interpreted as the presence of slabs with BM-type structure of Pnma and I2mb symmetry.  相似文献   

6.
The new compound CuSb2O3Br crystallize in the monoclinic space group Cc. The unit cell parameters are , , , β=90°, Z=16. The crystal structure is solved from single crystal data, R=0.0490. The compound show a layered structure with slabs from cubic Sb2O3 interspersed in between puckered layers of CuBr. The Sb(III) atoms have tetrahedral [SbO3E] coordination where E is the 5s2 lone pair, these units build up Sb4O4E6 cages. The CuBr layers resemble those in hexagonal CuBr but the Cu(I) ions have actually tetrahedral [CuBr3O] coordination. The Cu-O bonds link the Sb4O6 cages with the CuBr layers.  相似文献   

7.
The new magnesium rhodium boron compound Mg8Rh4B has been synthesized by reaction of the metal powders with crystalline or amorphous boron or the RhB precursor. The crystal structure of Mg8Rh4B was solved using single-crystal X-ray diffraction data (space group , , Z=8, 174 reflections, RF=0.016). The crystal structure can be described as a filled Ti2Ni type where the interstitial sites 8b (), located at the center of two nested Mg4Rh4 tetrahedra, are occupied by boron atoms. Taking into account the absence of the Ti2Ni-type phase in the binary Mg-Rh system, the boron atoms can be considered as stabilizing this structural motif. From the bonding analysis with the electron localization function the crystal structure is described as covalently bonded [Rh4B]3− anions, embedded in a cationic magnesium matrix.  相似文献   

8.
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is at 10 K and is in very good agreement with the value, at 10 K, inferred from the magnetic hysteresis curve.  相似文献   

9.
We have studied the structural evolution of monoclinic BaZr(PO4)2 during heating up to 835 K by Raman spectroscopy. In agreement with previous studies we found a first-order phase transition at about 730 K during heating while upon cooling the reverse transition occurs at 705 K. However, some disagreement about the crystal structure of the high-temperature polymorph occurs in the literature. While the space group has not yet been determined, the X-ray diffraction pattern of the high-temperature phase has been indexed on either an orthorhombic or a hexagonal unit cell. We found that the number of Raman active internal PO4 vibrational modes decrease from nine to six during the transition. A group theoretical survey through all orthorhombic, trigonal, and hexagonal factor groups revealed that the observed number of vibrations would only be consistent with the Ba and Zr atoms located at a site, the P and two O atoms at a C3v(3m), and six O atoms at a Cs(m) site in the D3d factor group. Based on our Raman data, the space group of the high-temperature polymorph is thus either , , or .  相似文献   

10.
A new ternary compound, Ce2PdGa10, has been synthesized using Ga flux and characterized by single-crystal X-ray diffraction. Ce2PdGa10 adopts a tetragonal structure in the I4/mmm space group and is isostructural to Ce2NiGa10. Lattice parameters are , , , and Z=2. The compound is metallic (dρ/dT>0), with the resistance decreasing roughly linearly with temperature from 300 to 175 K. The magnetic susceptibility of Ce2PdGa10 is consistent with local-moment paramagnetism and no long-range magnetic ordering occurs down to 2 K. A large positive magnetoresistance over 200% is observed at 2 K for fields of 9 T. In this paper, we present the structure and physical properties of Ce2PdGa10 and compared them to CePdGa6.  相似文献   

11.
Reported are the syntheses, crystal structure determinations from single-crystal X-ray diffraction, and magnetic properties of two new ternary compounds, Eu11Cd6Sb12 and Eu11Zn6Sb12. Both crystallize with the complex Sr11Cd6Sb12 structure type—monoclinic, space group C2/m (no. 12), Z=2, with unit cell parameters a=31.979(4) Å, b=4.5981(5) Å, c=12.3499(14) Å, β=109.675(1)° for Eu11Zn6Sb12, and a=32.507(2) Å, b=4.7294(3) Å, c=12.4158(8) Å, β=109.972(1)° for Eu11Cd6Sb12. Their crystal structures are best described as made up of polyanionic and ribbons of corner-shared ZnSb4 and CdSb4 tetrahedra and Eu2+ cations. A notable characteristic of these structures is the presence of Sb-Sb interactions, which exist between two tetrahedra from adjacent layers, giving rise to unique channels. Detailed structure analyses shows that similar bonding arrangements are seen in much simpler structure types, such as Ca3AlAs3 and Ca5Ga2As6 and the structure can be rationalized as their intergrowth. Temperature-dependent magnetization measurements indicate that Eu11Cd6Sb12 orders anti-ferromagnetically below 7.5 K, while Eu11Zn6Sb12 does not order down to 5 K. Resistivity measurements confirm that Eu11Cd6Sb12 is poorly metallic, as expected for a Zintl phase.  相似文献   

12.
The first indium platinum metal borides have been synthesized and structurally characterized by single crystal X-ray diffraction data. In3Ir3B and In3Rh3B are isotypic. They crystallize with the hexagonal space group and Z=1. The lattice constants are , for In3Ir3B and , for In3Rh3B. The structure which is derived from the Fe2P type is characterized by columns of boron centered triangular platinum metal prisms inserted in a three-dimensional indium matrix. The indium atoms are on split positions. In5Ir9B4 (hexagonal, space group , , , Z=1) crystallizes with a structure derived from the CeCo3B2 type. The structure can be interpreted as a layer as well as a channel structure. In part the indium atoms are arranged at the vertices of a honeycomb net (Schlaefli symbol 63) separating slabs consisting of double layers of triangular Ir6B prisms, and in part they form a linear chain in a hexagonal channel formed by iridium prisms and indium atoms of the honeycomb lattice.  相似文献   

13.
The crystal structures of three new intermetallic ternary compounds in the LnNiSb3 (Ln=Pr, Nd and Sm) family have been characterized by single crystal X-ray diffraction. PrNiSb3, NdNiSb3 and SmNiSb3 all crystallize in an orthorhombic space group, Pbcm (No. 57), Z=12, with , , , and ; , , , and ; and , , , and , for Ln=Pr, Nd and Sm, respectively. These compounds consist of rare-earth atoms located above and below layers of nearly square, buckled Sb nets, along with layers of highly distorted edge- and face-sharing NiSb6 octahedra. Resistivity data indicate metallic behavior for all three compounds. Magnetization measurements show antiferromagnetic behavior with (PrNiSb3), 4.6 K (NdNiSb3), and 2.9 K (SmNiSb3). Effective moments of 3.62 μB, 3.90 μB and 0.80 μB are found for PrNiSb3, NdNiSb3 and SmNiSb3, respectively, and are consistent with Pr3+ (f 2), Nd3+ (f 3), and Sm3+ (f 4).  相似文献   

14.
15.
The new compound Sr5(As2O7)2(AsO3OH) was synthesized under hydrothermal conditions. It represents a previously unknown structure type and belongs to a group of a few compounds in the system SrO-As2O5-H2O; (As2O7)4− besides (AsO3OH)2− groups have not been described yet. The crystal structure of Sr5(As2O7)2(AsO3OH) was determined by single-crystal X-ray diffraction (space group P21/n, a=7.146(1), b=7.142(1), , β=93.67(3)°, , Z=4). One of the five symmetrically unique Sr atoms is in a trigonal antiprismatic (Inorg. Chem. 35 (1996) 4708)—coordination, whereas the other Sr atoms adopt the commonly observed (“Collect” data collection software, Delft, The Netherlands, 1999; Methods Enzymol. 276 (1997) 307)—coordination. The position of the hydrogen atom was located in a difference Fourier map and subsequently refined with an isotropic displacement parameter. Worth mentioning is the very short hydrogen bond length Oh-H?O(1) of 2.494(4) Å; it belongs to the shortest known examples where the donor and acceptor atoms are crystallographically different. This hydrogen bond was confirmed by IR spectroscopy. In addition, Raman spectra were collected in order to study the arsenate groups.  相似文献   

16.
We report the synthesis and crystal structure of the new compound Sr4PbPt4O11, containing platinum in highly unusual square pyramidal coordination. The crystals were obtained in molten lead oxide. The structure was solved by X-ray single crystal diffraction techniques on a twinned sample, the final R factors are R=0.0260 and wR=0.0262. The symmetry is triclinic, space group P1¯, with , , , α=90.421(3)°, β=89.773(8)°, γ=90.140(9)° and Z=2. The structure is built from dumbell-shaped Pt2O9 entities formed by a dinuclear metal-metal bonded Pt26+ ion with asymmetric environments of the two Pt atoms, classical PtO4 square plane and unusual PtO5 square pyramid. Successive Pt2O9 entities deduced from 90° rotations are connected through the oxygens of the PtO4 basal squares to form [Pt4O108−] columns further connected through Pb2+ and Sr2+ ions. Raman spectroscopy confirmed the peculiar platinum coordination environment.  相似文献   

17.
Ln3Co4Sn13 (Ln=La, Ce) have been synthesized by flux growth and characterized by single crystal X-ray diffraction. These compounds adopt the Yb3Rh4Sn13-type structure and crystallize in the cubic space group (No. 223) with Z=2. Lattice parameters at 298 K are , , and , for the La and Ce analogues, respectively. The crystal structure consists of an Sn-centered icosahedron at the origin of the unit cell, which shares faces with eight Co trigonal prisms and 12 Ln-centered cuboctahedra. Magnetization data at 0.1 T show paramagnetic behavior down to 1.8 K for Ce3Co4Sn13, with per Ce3+, while conventional type II superconductivity appears below 2.85 K in the La compound. Electrical resistivity and specific heat data for the La compound show a corresponding sharp superconducting transition at Tc∼2.85 K. The entropy and resistivity data for Ce3Co4Sn13 show the existence of the Kondo effect with a complicated semiconducting-like behavior in the resistivity data. In addition, a large enhanced specific heat coefficient at low T with a low magnetic transition temperature suggests a heavy-fermionic character for the Ce compound. Herein, the structure and physical properties of Ln3Co4Sn13 (Ln=La, Ce) are discussed.  相似文献   

18.
A particular pathology of certain W5Si3-type A5B3 structures (I4/mcm) appears to arise because of unduly close approaches of the A1-type atoms on the cell faces at , 0, () that occur with the larger and more electropositive A and/or in the presence of smaller B atoms. A structure refinement of binary Ba4.81Pb3 indicates such a marginal stability in that the Ba atoms in the facial Ba0.81 chains exhibit an extreme displacement ellipsoid along . Although Ca5Sn3 and La5Ga3 binaries are unknown in this structure type, five stable ternary derivatives of these have been synthesized via substitution reactions and characterized by single crystal X-ray diffraction means: Ca4Sn3.223(4)Mg0.777, Ca4Sn3Cu1.30(4), Ca4.66(6)Sn3Zn0.704(4), La4.81(1)Ga1.38(2)Al1.62, and La4.762(5)Ga1.5(1)Zn1.5. Only the Ca-Sn-Zn phase exhibits lower symmetry, P4/mbm. The problematic A1 sites exhibit diverse changes in these, whereas the surrounding B2 tetrahedra are largely unaltered. The Ca-Sn results are, respectively: direct Mg/Sn substitution at the Ca1 site; mixed fractional distribution of the smaller Cu at two sites around the A1 position with an unresolved disorder; a pair of apparently independent modes, fractional Ca in the normal position and fractional Zn rectangles thereabout. The two La-Sn phases contain normal Ga,Al (Ga,Zn) tetrahedral chains with pairs of fractional disordered La atoms along , 0, z. Each can be rationalized in terms of a reasonable incommensurate structure. Electronic effects may also be operable.  相似文献   

19.
A novel and efficient synthesis method concerning the preparation of the first stage calcium graphite intercalation compound is provided. It makes use of a reaction between liquid metallic alloy and pyrolytic graphite. From now on it is especially easy to obtain bulk CaC6 samples. Thanks to such samples, it was possible to study in detail the crystal structure of this binary intercalation compound. It has been entirely specified, so that we know that CaC6 crystal is rhombohedral and belongs to the space group with the following parameters: and α=49.55°. The elemental unit cell contains one calcium atom and six carbon atoms. In this paper, we show also how the various MC6 structures evolve according to the size of the intercalated element and to the bond nature that appears in the final compound. CaC6 is unique, since all the other MC6 compounds exhibit a hexagonal symmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号