首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel alkaline earth silicate borate cyanides Ba7[SiO4][BO3]3CN and Sr7[SiO4][BO3]3CN have been obtained by the reaction of the respective alkaline earth metals M=Sr, Ba, the carbonates MIICO3, BN, and SiO2 using a radiofrequency furnace at a maximum reaction temperature of 1350°C and 1450°C, respectively. The crystal structures of the isotypic compounds MII7[SiO4][BO3]3CN have been determined by single-crystal X-ray crystallography (P63mc (no. 186), Z=2, a=1129.9(1) pm, c=733.4(2) pm, R1=0.0336, wR2=0.0743 for MII=Ba and a=1081.3(1) pm, c=695.2(1) pm, R1=0.0457, wR2=0.0838 for MII=Sr). Both ionic compounds represent a new structure type, and they are the first examples of silicate borate cyanides. The cyanide ions are disordered and they are surrounded by Ba2+/Sr2+ octahedra, respectively. These octahedra share common faces building chains along [001]. The [BO3]3− ions are arranged around these chains. The [SiO4]4− units are surrounded by Ba2+/Sr2+ tetrahedra, respectively. The title compounds additionally have been investigated by 11B, 13C, 29Si, and 1H MAS-NMR as well as IR and Raman spectroscopy confirming the presence of [SiO4]4−, [BO3]3−, and CN ions.  相似文献   

2.
The quaternary compound Rb2BaNb2Se11 has been synthesized by reacting Nb metal with an in situ formed flux of Rb2Se3, BaSe and Se at 773 K. Rb2BaNb2Se11 crystallizes in the monoclinic space group P21/c with four formula units and lattice parameters a=7.8438(5) Å, b=13.6959(6) Å, c=17.0677(13) Å, β=97.917(9)°. The structure consists of one-dimensional anionic chains formed by interconnection of dimeric [Nb2Se11] units. The chains are directed along the crystallographic c-axis with Rb+ and Ba2+ ions being located between the chains. The [Nb2Se11] units are formed by face sharing of two NbSe7 bipyramids and are joined by Se22− dianions to form infinite 1[Nb2Se114−] chains. The compound was characterized with infrared spectroscopy in the FIR region, Raman and UV/Vis diffuse reflectance spectroscopy.  相似文献   

3.
Three new compounds—Sr7.04(2)Ga1.94(2)Sb6, Ba7.02(3)Ga1.98(3)Sb6 and Eu7.04(3)Ga1.90(3)Sb6—have been synthesized from reactions of the corresponding elements using gallium as a metal flux. Their crystal structures (space group I4¯3d (No. 220), Z=2 with unit cell parameters: a=9.9147(9) Å for the Sr-compound; a=10.3190(9) Å for the Ba-compound; and a=9.7866(8) Å for the Eu-compound) have been established by single-crystal X-ray diffraction. The structures are best described as Ga-stabilized derivatives of the hypothetical Sr4Sb3, Ba4Sb3 and Eu4Sb3 phases with the cubic Th3P4 type. Such an inclusion of interstitial Ga atoms in this atomic arrangement results in the formation of isolated [Ga2Sb6]14− fragments, isoelectronic and isostructural with the [Sn2Te6]6− anions in the K3SnTe3 type, and allows for the attainment of a charge-balanced electron count. In that sense, the Sr4Sb3, Ba4Sb3 and Eu4Sb3 binaries, which are expected to be electron-deficient and are currently unknown, can be “turned” into Sr7Ga2Sb6, Ba7Ga2Sb6 and Eu7Ga2Sb6, whose structures are readily rationalized following the Zintl concept.  相似文献   

4.
The germanate compound Cu2Sc2Ge4O13 has been synthesized by solid-state ceramic sintering techniques between 1173 and 1423 K. The structure was solved from single-crystal data by Patterson methods. The title compound is monoclinic, a=12.336(2) Å, b=8.7034(9) Å, c=4.8883(8) Å, β=95.74(2), space group P21/m, Z=4. The compound is isotypic with Cu2Fe2Ge4O13, described very recently. The structure consists of crankshaft-like chains of edge-sharing ScO6 octahedra running parallel to the crystallographic b-axis. These chains are linked laterally by [Cu2O6]8− dimers forming a sheet of metal-oxygen-polyhedra within the a-b plane. These sheets are separated along the c-axis by [Ge4O13]10− units. Cooling to 100 K does not alter the crystallographic symmetry of Cu2Sc2Ge4O13. While the b, c lattice parameter and the unit cell volume show a positive linear thermal expansion (α=6.4(2)×10−6, 5.0(2)×10−6 and 8.3(2)×10−6 K−1 respectively), the a lattice parameter exhibits a negative thermal expansion (α=−3.0(2)×10−6 K−1) for the complete T-range investigated. This negative thermal expansion of a is mainly due to the increase of the Cu-Cu interatomic distance, which is along the a-axis. Average bond lengths remain almost constant between 100 and 298 K, whereas individual ones partly show both significant shortages and lengthening.  相似文献   

5.
The new compound Cs4P2Se10 was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. 31P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of −52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs4P2Se10 has the triclinic space group P-1 with a=7.3587(11) Å, b=7.4546(11) Å, c=10.1420(15) Å, α=85.938(2)°, β=88.055(2)°, and γ=85.609(2)° and contains the [P2Se10]4− anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe4) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs4P2Se10 was recovered upon annealing. The static 31P NMR spectrum at 350 °C contained a single peak with a −35 ppm chemical shift and a ∼7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature.  相似文献   

6.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

7.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

8.
The novel silver(I)thioantimonates(III) [C4N2H14][Ag3Sb3S7] (I) (C4N2H12=1,4-diaminobutane) and [C2N2H9]2[Ag5Sb3S8] (II) (C2N2H8=ethylenediamine) were synthesized under solvothermal conditions using AgNO3, Sb, S and the amines as structure directing molecules. Both compounds crystallize as orange needles with lattice parameters a=6.669(1) Å, b=30.440(3) Å, c=9.154(1) Å for I (space group Pnma), and a=6.2712(4) Å, b=15.901(1) Å, c=23.012(2) Å, β=95.37(1)° for II (space group P21/n). In both compounds the primary building units are trigonal SbS3 pyramids, AgS3 triangles and AgS4 tetrahedra. In I the layered [Ag3Sb3S7]2− anion is constructed by two different chains. An [Sb2S4] chain running along [100] is formed by vertex sharing of SbS3 pyramids. The second chain contains a Ag3SbS5 group composed of the AgS4 tetrahedron, two AgS3 units and one SbS3 pyramid. The Ag3SbS5 units are joined via S atoms to form the second chain which is also directed along [100]. The layered anion is then obtained by condensation of the two individual chains. The organic structure director is sandwiched by the inorganic layers and the shortest inter-layer distance is about 6.4 Å. In II the primary building units are linked into different six-membered rings which form a honeycomb-like layer. Two such layers are connected via Ag-S bonds of the AgS4 tetrahedra giving the final undulated double layer anion. The structure directing ethylenediamine cations are located in pairs between the layers and a sandwich-like arrangement of alternating anionic layers and organic cations is observed. The inter-layer separation is about 5.4 Å. Both compounds decompose in a more or less complex manner when heated in an argon atmosphere. The optical band gaps of about 1.9 eV for the two compounds proof the semiconducting behavior. For II the conductivity was measured with impedance spectroscopy and amounts to σ295K=7.6×10−7 Ω−1 cm−1. At 80 °C the conductivity is significantly larger by one order of magnitude.  相似文献   

9.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

10.
Quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 were synthesized on direct combination of their elements in stoichiometric ratios at T>800 °C under vacuum. Their structures were determined with X-ray diffraction of single crystals. InSn2Bi3Se8 crystallizes in monoclinic space group C2/m (No. 12) with a=13.557(3) Å, b=4.1299(8) Å, c=15.252(3) Å, β=115.73(3)°, V=769.3(3) Å3, Z=2, and R1/wR2/GOF=0.0206/0.0497/1.092; In0.2Sn6Bi1.8Se9 crystallizes in orthorhombic space group Cmc21 (No. 36) with a=4.1810(8) Å, b=13.799(3) Å, c=31.953(6) Å, V=1843.4(6) Å3, Z=4, and R1/wR2/GOF=0.0966/0.2327/1.12. InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 are isostructural with CuBi5S8 and Bi2Pb6S9 phases, respectively. The structures of InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 feature a three-dimensional framework containing slabs of NaCl-(311) type with varied thicknesses. Calculations of the electronic structure and measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps. Both compounds show n-type semiconducting properties with Seebeck coefficients −270 and −230 μV/K at 300 K for InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9, respectively.  相似文献   

11.
A new Li-containing quaternary nitride, Li4Sr3Ge2N6, was obtained as single crystals from constituent elements in molten Na. It crystallizes in space group C2/m (No. 12) with a=6.1398(7) Å, b=10.021(1) Å, c=6.3130(7) Å, β=91.279(2)°, and Z=2. It contains the first example of isolated nitridogermanate anions of Ge2N610−, which is also the first example of edge-sharing tetrahedral [GeN4].  相似文献   

12.
The germanide Yb2Ru3Ge4 was synthesized from the elements using the Bridgman crystal growth technique. The monoclinic Hf2Ru3Si4 type structure was investigated by X-ray powder and single crystal diffraction: C2/c, Z=8, a=1993.0(3) pm, b=550.69(8) pm, c=1388.0(2) pm, β=128.383(9)°, wR2=0.0569, 2047 F2 values, and 84 variables. Yb2Ru3Ge4 contains two crystallographically independent ytterbium sites with coordination numbers of 18 and 17 for Yb1 and Yb2, respectively. Each ytterbium atom has three ytterbium neighbors at Yb-Yb distances ranging from 345 to 368 pm. The shortest interatomic distances occur for the Ru-Ge contacts. The three crystallographically independent ruthenium sites have between five and six germanium neighbors in distorted trigonal bipyramidal (Ru1Ge5) or octahedral (Ru2Ge6 and Ru3Ge6) coordination at Ru-Ge distances ranging from 245 to 279 pm. The Ru2 atoms form zig-zag chains running parallel to the b-axis at Ru2-Ru2 of 284 pm. The RuGe5 and RuGe6 units are condensed via common edges and faces leading to a complex three-dimensional [Ru3Ge4] network.  相似文献   

13.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

14.
We report the synthesis and elementary properties of the Co7Se8−xSx (x=0-8) and Ni7Se8−xSx (x=0-7) solid solutions. Both systems form a NiAs-type structure with metal vacancies. In general, the lattice parameters decrease with increasing x, but in the Ni7Se8−xSx system c increases on going from x=5 to 7. Magnetic susceptibility measurements show that all samples exhibit temperature-independent paramagnetism from 25-250 K. Samples within the Co7Se8−xSx system, as well as Ni7Se8 and Ni7SeS7, were found to be poor metals with resistivities of ∼0.20 and ∼0.06 mΩ cm at 300 K, respectively. The Sommerfeld constant (γ) was determined from specific heat measurements to be ∼13 mJ/molCoK2 and ∼7 mJ/molNiK2 for Co7Se8−xSx and Ni7Se8−xSx, respectively.  相似文献   

15.
A new Zintl phase Ba3Ga4Sb5 was obtained from the reaction of Ba and Sb in excess Ga flux at 1000°C, and its structure was determined with single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group Pnma (No. 62) with a=13.248(3) Å, b=4.5085(9) Å, c=24.374(5) Å and Z=4. Ba3Ga4Sb5 has a three-dimensional [Ga4Sb5]6− framework featuring large tunnels running along the b-axis and accommodating the Ba ions. The structure also has small tube-like tunnels of pentagonal and rhombic cross-sections. The structure contains ethane-like dimeric Sb3Ga-GaSb3 units and GaSb4 tetrahedra that are connected to form 12- and 14-membered tunnels. Band structure calculations confirm that the material is a semiconductor and indicate that the structure is stabilized by strong Ga-Ga covalent bonding interactions.  相似文献   

16.
The title compounds were isolated in well-crystallized form from samples with a substantial excess of antimony, annealed at temperatures slightly below the melting point of that element. Their crystal structures were determined from single-crystal diffractometer data. Pr9-xSb21-y and Nd9-xSb21-y crystallize with a new monoclinic structure type, Pearson symbol mS(62-5.4), space group Cm, Z=2 with a=2859.1(4) pm, b=426.3(1) pm, c=1356.1(2) pm, β=95.52(1)°, R=0.034 for 4351 structure factors and 188 variable parameters for Pr9-xSb21-y and a=2845(2) pm, b=424.7(8) pm, c=1345.9(9) pm, β=95.42(7)°, R=0.069 for 2928 F values and 188 variables for Nd9-xSb21-y. Of the 30 atomic sites, three show fractional occupancy corresponding to the compositions Pr8.303(5)Sb20.03(1) and Nd8.30(2)Sb19.98(9), respectively. A model for the order of occupied atomic sites with a tripled b-axis is proposed resulting in the ideal compositions Pr5Sb12 and Nd5Sb12. The holmium compound Ho2Sb5 has a Dy2Sb5-type structure: mP28, P21/m, a=1301.8(3) pm, b=414.9(1) pm, c=1451.1(2) pm, β=102.14(1)°, R=0.028 for 2573 F values and 86 variables. In both structure types most rare earth atoms have nine antimony neighbors forming tricapped trigonal prisms. The coordination polyhedra of the antimony atoms show a great variety, with a trigonal prism of rare earth atoms as one extreme case. The other extreme coordination of an antimony atom is a distorted octahedron formed by six antimony atoms. The differences and similarities of both structures are discussed. Chemical bonding within the antimony polyanions is analyzed on the basis of an extended Zintl-Klemm concept using bond-length-bond-strength relationships.  相似文献   

17.
Ytterbium(III) tetraaquatris(tetraoxorhenate(VII)), Yb(ReO4)3(H2O)4, was prepared by the reaction of Yb2O3 with concentrated HReO4 at room temperature. The colorless compound crystallizes in the monoclinic space group P21/n (No. 14) with four formula units per unit cell (a=730.5(1) pm, b=1484.1(5) pm, c=1311.7(2) pm, β=93.69(1)). The main feature of the crystal structure is the formation of chains 1[Yb(H2O)4(ReO4)2(ReO4)2/2] running along [100]. This arrangement shows distorted cubic antiprisms of [Yb(H2O)4(ReO4)2(ReO4)2/2] interconnected via the ReO4 ligands. The chains are held together in the solid by hydrogen bonding. The compound is paramagnetic and follows the Curie-Weiss law with a magnetic moment of 4.0 μB at room temperature and θ=−42 K. It loses hydration water in two steps at temperatures below 400 K; decomposition begins at 850 K, forming Yb2O3(Re2O7)2 and is complete at 1350 K leading to Yb2O3 as final product.  相似文献   

18.
The new pyrazine-pillared solids, AgReO4(C4H4N2) (I) and Ag3Mo2O4F7(C4H4N2)3 (C4H4N2=pyrazine, pyz) (II), were synthesized by hydrothermal methods at 150 °C and characterized using single crystal X-ray diffraction (IP21/c, No. 14, Z=4, a=7.2238(6) Å, b=7.4940(7) Å, c=15.451(1) Å, β=92.296(4)°; IIP2/n, No. 13, Z=2, a=7.6465(9) Å, b=7.1888(5) Å, c=19.142(2) Å, β=100.284(8)°), thermogravimetric analysis, UV-Vis diffuse reflectance, and photoluminescence measurements. Individual Ag(pyz) chains in I are bonded to three perrhenate ReO4- tetrahedra per layer, while each layer in II contains sets of three edge-shared Ag(pyz) chains (π-π stacked) that are edge-shared to four Mo2O4F73- dimers. A relatively small interlayer spacing results from the short length of the pyrazine pillars, and which can be removed at just slightly above their preparation temperature, at >150-175 °C, to produce crystalline AgReO4 for I, and Ag2MoO4 and an unidentified product for II. Both pillared solids exhibit strong orange-yellow photoemission, at 575 nm for I and 560 nm for II, arising from electronic excitations across (charge transfer) band gaps of 2.91 and 2.76 eV in each, respectively. Their structures and properties are analyzed with respect to parent ‘organic free’ silver perrhenate and molybdate solids which manifest similar photoemissions, as well as to the calculated electronic band structures.  相似文献   

19.
Unique magnetic properties of a ternary uranate Ba2U2O7 are reported. Magnetic susceptibility measurements reveal that this compound undergoes a magnetic transition at 19 K. Below this temperature, magnetic hysteresis was observed. The results of the low-temperature specific heat measurements below 30 K support the existence of the second-order magnetic transition at 19 K. Ba2U2O7 undergoes a canted antiferromagnetic ordering at this temperature. The magnetic anomaly which sets in at 58 K may be due to the onset of one-dimensional magnetic correlations associated with the linear chains formed by U ions. The analysis of the experimental magnetic susceptibility data in the paramagnetic temperature region gives the effective magnetic moment μeff=0.73 μB, the Weiss constant θ=−10 K, and the temperature-independent paramagnetic susceptibility χTIP=0.14×10−3 emu/mole.The magnetic susceptibility results and the optical absorption spectrum were analyzed on the basis of an octahedral crystal field model. The energy levels of Ba2U2O7 and the crystal field parameters were determined.  相似文献   

20.
Tetrahydroborate enclathrated sodalites with gallosilicate and aluminogermanate host framework were synthesized under mild hydrothermal conditions and characterized by X-ray powder diffraction and IR spectroscopy. Crystal structures were refined in the space group P-43n from X-ray powder data using the Rietveld method. Na8[GaSiO4]6(BH4)2: a=895.90(1) pm, V=0.71909(3)×10−6 nm3, RP=0.074, RB=0.022, Na8[AlGeO4]6(BH4)2: a=905.89(2) pm, V=0.74340(6)×10−6 nm3, RP=0.082, RB=0.026. The tetrahedral framework T-atoms are completely ordered in each case and the boron atoms are located at the centre of the sodalite cages. The hydrogen atoms of the enclathrated anions were refined on x, x, x positions, restraining them to boron-hydrogen distances of 116.8 pm as found in NaBD4.The IR-absorption spectra of the novel phases show the typical bands of the tetrahedral group as found in the spectrum of pure sodium boron hydride.The new sodalites are discussed as interesting -containing model compounds which could release pure hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号