首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic behavior of the ternary borides RE2RuB6 and RE2OsB6 (RE = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) was studied in the temperature range 1.5 K < T < 1100 K. All compounds crystallize with the Y2ReB6-type structure and are characterized by direct RE-RE contacts and the formation of planar infinite two-dimensional rigid boron nets. The magnetic properties reveal a typical Van Vleck paramagnetism of free RE3+-ions at temperatures higher than 200 K with ferromagnetic interaction in the low-temperature range T < 55 K. The ferromagnetic ordering temperatures vary with the De Gennes factor. There is no indication for a magnetic contribution from the Ru(Os)-sublattice. Above 1.8 K none of the samples were found to be superconducting.  相似文献   

2.
The magnetic structures of RSn1+xGe1−x (R=Tb, Dy, Ho and Er, x≈0.1) compounds have been determined by neutron diffraction studies on polycrystalline samples. The data recorded in a paramagnetic state confirmed the orthorhombic crystal structure described by the space group Cmcm. These compounds are antiferromagnets at low temperatures. The magnetic ordering in TbSn1.12Ge0.88 is sine-modulated described by the propagation vector k=(0.4257(2), 0, 0.5880(3)). Tb magnetic moment equals 9.0(1) μB at 1.62 K. It lies in the b-c plane and form an angle θ=17.4(2)° with the c-axis. This structure is stable up to the Nèel temperature equal to 31 K. The magnetic structures of RSn1+xGe1−x, where R are Dy, Ho and Er at low temperatures are described by the propagation vector k=(1/2, 1/2, 0) with the sequence (++−+) of magnetic moments in the crystal unit cell. In DySn1.09Ge0.91 and HoSn1.1Ge0.9 magnetic moments equal 7.25(15) and 8.60(6) μB at 1.55 K, respectively. The moments are parallel to the c-axis. For Ho-compound this ordering is stable up to TN=10.7 K. For ErSn1.08Ge0.92, the Er magnetic moment equals 7.76(7) μB at T=1.5 K and it is parallel to the b-axis. At Tt=3.5 K it tunes into the modulated structure described by the k=(0.496(1), 0.446(4), 0). With the increase of temperature there is a slow decrease of kx component and a quick decrease of ky component. The Er magnetic moment is parallel to the b-axis up to 3.9 K while at 4 K and above it lies in the b-c plane and form an angle 48(3)° with the c-axis. In compounds with R=Tb, Ho and Er the magnetostriction effect at the Nèel temperature is observed.  相似文献   

3.
The title compounds were prepared by reaction of the elemental components at high temperature. They crystallize with a new orthorhombic structure type which was determined from single-crystal diffractometer data of Ho3Ru4Ga15: Pnma, a=871.7(1) pm, b=956.4(1) pm, c=1765.9(3) pm, Z=4, R=0.040 for 1039 structure factors and 114 variable parameters. The structure may be viewed as consisting of two kinds of atomic layers, although atomic bonding within and between the layers is comparable strength, as can be judged from the near-neighbor environments, where all of the 15 atomic sites have high coordination numbers. One kind of atomic layers (A) contains all of the holmium and additional gallium atoms in the ratio Ho:Ga=3:5 with a unit mesh content of 2Ho3Ga5; these layers are flat. The other layers (B) consist of sheets of corner- and edge-sharing condensed RuGa6 octahedra, which are extremely compressed resulting in a hexagonal close-packed, puckered net with a Ru:Ga ratio of 2:5 and a unit mesh content of 4Ru2Ga5. These nets alternate in the sequence ABAB, ABAB, thus yielding the formula 4Ho3Ga5·8Ru2Ga5=4Ho3Ru4Ga15. Similar layers are observed in the structures of Y2Co3Ga9, Gd3Ru4Al12, Er4Pt9Al24, CeOsGa4, CaCr2Al10, and the four stacking variants with the compositions TbRe2Al10, DyRe2Al10, YbFe2Al10, and LuRe2Al10.  相似文献   

4.
CdRE2S4 (RE = Gd, Tb, Dy, Ho, Er, Tm, and Yb) and Mg(GdxYb1?x)2S4 were prepared by solid-state reactions. All the cadmium-containing compounds are cubic, i.e., the Th3P4 structure for Gd, Tb, and Dy and the spinel type for all the others. The first three compounds were deficient in CdS. In the case of the Mg system, for x = 1 the system is cubic Th3P4, for x = 0 cubic spinel, and for 0 < x < 1 orthorhombic MnY2S4 (Cmc21). All the materials studied are paramagnetic above 77 K. Below 77 K in the magnesium family both cubic materials are paramagnetic down to 4.2 K and the orthorhombic materials show magnetic ordering. In the cadmium family all but CdTm2S4 show exchange coupling.  相似文献   

5.
A series of compositions with the general formula RE2Hf2O7 (RE=Dy, Ho, Er, Tm, Y and Lu) was prepared by a standard solid-state route and characterized by powder X-ray diffraction (XRD) and Raman spectroscopy. As per theoretical modeling reported in literature, some of these materials were predicted to exist in pyrochlore lattice. However, a careful X-ray diffraction, Raman spectroscopic and synchrotron radiation-XRD study revealed that under the experimental conditions used in the present investigation, out of all the RE2Hf2O7 samples only Dy2Hf2O7 has got a tendency to form a pyrochlore structure. All the other (Ho, Er, Tm, Lu, Y) hafnates crystallize in a defect-fluorite structure. In order to further ascertain these inferences, a few more RE2Hf2O7 samples (La, Nd, Sm) i.e., with larger RE3+ ions were also prepared and the results were compared.  相似文献   

6.
Yttrium- and rare-earth-substituted derivatives of Ca3−vRvCo2O6 (RY, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, and Lu) have been synthesized and structurally characterized by powder X-ray and neutron diffraction. All phases adopt the K4CdCl6-type structure with space group Rc), in which the trivalent R3+ substituents randomly occupy the Ca2+ site. The homogeneity range of Ca3−vRvCo2O6 extends to v≈0.90 for the substituents concerned. A significant increase in the Co2-O distances within the trigonal-prismatic Co2O6 co-ordination polyhedra upon introduction of R3+ confirms that extra electrons from the R3+-for-Ca2+ substitution exclusively enter the Co2 site of the quasi-one-dimensional Ca3−vRvCo2O6 structure, thereby formally reducing its oxidation state. This is furthermore supported by magnetic susceptibility and low-temperature neutron diffraction measurements. The long-range ferrimagnetic ordering temperature is reduced upon R substitution and appears to vanish for v>∼0.30.  相似文献   

7.
A series of ternary compounds RECu9Mg2 (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb) have been synthesized via induction melting of elemental metal ingots followed by annealing at 400 °C for 4 weeks. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. These phases crystallize with an ordered version of the binary hexagonal structure type first reported for CeNi3. The crystal structure was solved for TbCu9Mg2 from single crystal X-ray counter data (TbCu9Mg2-structure type, P63/mmc-space group, hP24-Pearson symbol, a=0.49886 (7) nm, c=1.61646 (3) nm, RF=0.0474 for 190 unique reflections). The Rietveld refinement of the X-ray powder diffraction patterns of RECu9Mg2 confirmed the same crystal structure for the reported rare earth metals. The unit cell volumes for RECu9Mg2 smoothly follow the lanthanide contraction. The existence of a RECu9Mg2 phase was excluded for RE=Er and Tm under the investigated experimental conditions.  相似文献   

8.
The new mixed oxide having composition close to Ca7Co3Ga5O18 was synthesized from CaCO3, Co3O4 and Ga2O3 at 1150 °C in air and studied by neutron and synchrotron X-ray powder diffraction, selected-area electron diffraction and high-resolution electron microscopy. The structure was refined, using time-of-flight (TOF) neutron powder diffraction data, in space group F432, with and Z=8, to RF=0.7%. It is considerably disordered, with four different tetrahedral sites randomly occupied by Co and Ga atoms at a ratio of 1:2. The tetrahedra form a disordered (Co1/3Ga2/3)O2 3D-framework inside which isolated CoO6 octahedra, surrounded by 8 Ca atoms, are located. The structure is related to the ordered structure of Ca14Al10Zn6O35. Electron diffraction patterns confirmed the symmetry and unit cell and revealed no diffuse scattering. High-resolution electron microscopy images showed the absence of extended structural defects.  相似文献   

9.
Five acetate-diphenoxo triply-bridged CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er) of formula [Co(μ-L)(μ-Ac)Ln(NO3)2] and two diphenoxo doubly-bridged CoII-LnIII complexes (LnIII = Gd, Tb) of formula [Co(H2O)(μ-L)Ln(NO3)3]·S (S = H2O or MeOH), were prepared in one pot reaction from the compartmental ligand N,N′,N′′-trimethyl-N,N′′-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylene triamine (H2L). The diphenoxo doubly-bridged CoII-LnIII complexes were used as platforms to obtain 1,5-dicyanamide-bridged tetranuclear CoII-LnIII complexes (LnIII = Gd, Tb, Dy, Ho, Er). All exhibit ferromagnetic interactions between the CoII and LnIII ions and in the case of the GdIII complexes, the JCoGd were estimated to be ∼+0.7 cm−1. Compound 3 exhibits slow relaxation of the magnetization.  相似文献   

10.
This paper reports about two new hydrogen-containing rare-earth oxoborates RE4B6O14(OH)2 (RE=Dy, Ho) synthesized under high-pressure/high-temperature conditions from the corresponding rare-earth oxides, boron oxide, and water using a Walker-type multianvil equipment at 8 GPa and 880 °C. The single crystal structure determination of Dy4B6O14(OH)2 showed: Pbcn, a=1292.7(2), b=437.1(2), , Z=2, R1=0.0190, and wR2=0.0349 (all data). The isotypic holmium species revealed: Pbcn, a=1292.8(2), b=436.2(2), , Z=2, R1=0.0206, and wR2=0.0406 (all data). The compounds exhibit a new type of structure, which is built up from layers of condensed BO4-tetrahedra. Between the layers, the rare-earth cations are coordinated by 7+2 oxygen atoms. Furthermore, we report about temperature-resolved in situ powder diffraction measurements, DTA/TG, and IR-spectroscopic investigations into RE4B6O14(OH)2 (RE=Dy, Ho).  相似文献   

11.
The crystal structures of ternary compounds RPt3−xSi1−y(R=Y, Tb, Dy, Ho, Er, Tm, Yb) have been elucidated from X-ray single crystal CCD data. All compounds are isotypic and crystallize in the tetragonal space group P4/mbm. The general formula RPt3−xSi1−y arises from defects: x≈0.20, y≈0.14. The crystal structure of RPt3−xSi1−y can be considered as a packing of four types of building blocks which derive from the CePt3B-type unit cell by various degrees of distortion and Pt, Si-defects.  相似文献   

12.
The new compounds YFe5P3 and LnFe5P3 (Ln = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were prepared by reaction of the elemental components in a tin flux. They have YCo5P3-type structure. A structure refinement of GdFe5P3 from single-crystal X-ray data resulted in a conventional residual of R = 0.063 for 29 variable parameters and 693 unique structure factors. Crystals of the new compound Ce2Fe12P7 were also prepared by the tin flux technique. Their Zr2Fe12P7-type structure was refined to R = 0.029 for 23 variables and 1365 F values. The coordination polyhedra of the two and some other closely related structure types are discussed. The thermal parameters of the transition metal atoms in such structures increase with increasing coordination number.  相似文献   

13.
The coexistence of superconductivity and magnetic order seems to take place in the so-called ruthenate-cuprates (Ru-1212). A systematic study is carried out on crystal structure of the RuSr2RCu2O8−δ phases (R=Gd, Tb, Dy, Y, Ho, Er) synthesized under high pressure by X-ray powder diffraction. RuSr2RCu2O8−δ (R=Gd, Tb, Dy, Y, Ho, Er) has the Ru-1212-type structure of a tetragonal symmetry and the RuO6 octahedra rotate around the c-axis with an additional small rotation around an axis perpendicular to c. The DC-magnetization data establish that compounds with R=Gd, Y, Ho, Er exhibit ferromagnetic order below about 140 K, and the Meissner effect was observed at low temperature for R=Y compound.  相似文献   

14.
Nine new A2Mo4Sb2O18 (A=Ce, Pr, Eu, Tb, Ho, Er, Tm, Yb, Lu) compounds have been synthesized by solid-state reactions. They are isostructural with six reported analogues of yttrium and other lanthanides and the monoclinic unit cell parameters of all fifteen of them vary linearly with the size of A3+ ion. Single crystal X-ray structures of eight A2Mo4Sb2O18 (A=Ce, Pr, Eu, Gd, Tb, Ho, Er, Tm) compounds have been determined. Neat A2Mo4Sb2O18 (A=Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm) compounds exhibit characteristic rare earth metal photoluminescence.  相似文献   

15.
A new complex oxide with the cation ratio Ca:Co: Ga=2:0.8:1.2 has been synthesized in air at 1150oC. The cobalt atoms adopt oxidation states 2+ and 3+ in equal amounts giving an oxygen content corresponding to the composition Ca2Co0.8Ga1.2O4.8. It crystallizes in F-centered cubic structure with a=15.0558 Å. Conductivity measurements performed at high temperatures revealed that the temperature increase gives a charge disproportionation of Co3+ species resulting in a small concentration of Co4+ species and thus a small p-type conductivity in the oxide. A decrease of the oxygen pressure promotes oxygen depletion from the oxide and a deterioration of the conductivity. The electric properties are interpreted within a small polaron conduction mechanism. An unusually large mobility activation energy of 0.45 eV can be explained by a large spatial separation of cobalt cations in the structure.  相似文献   

16.
A series of new compounds Ln(GaM2+)O4 and Ln(AlMn2+)O4 having a layer structure were successfully prepared [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M = Mg, Mn, Co, Cu, and Zn]. The synthesis conditions and the unit cell parameters for 23 compounds have been determined. These compounds are isostructural with YbFe2O4 (space group R3m, a = 3.455(1) Å, and c = 25.109(2) Å).  相似文献   

17.
The crystal structures of a series of compounds with the composition Ln3GaO6(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) synthesized by solid-state reaction at 1400°C are investigated. X-ray diffraction shows that Ln3GaO6 has a non-centrosymmetric orthorhombic structure (space group Cmc21). Lattice parameters a,b,c and cell volume and the average distances between Ln(1)-O, Ln(2)-O of these compounds decrease with the decreasing of the radii of trivalent Ln ions, which accord with the expected lanthanide contraction behavior. There are two sites of seven-fold coordination for Ln atoms with oxygens, and Ga atoms are in oxygen tetrahedra which are distorted and elongated along the a-axis. Magnetization measurements indicate that the susceptibility χ changes with temperature in Curie-type manner.  相似文献   

18.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

19.
The magnetic properties and structures of RPt compounds (R = Gd, Tb, Dy, Ho, Er, and Tm) are presented. Below their Curie temperature the compounds exhibit ferromagnetic behavior. In GdPt, the spontaneous magnetization at 4.2°K (6.7 μBGd) and the small superimposed susceptibility suggest that the gadolinium moments are parallel and the exchange interactions are positive. In the three types of noncollinear magnetic structures observed in the other compounds the rare earth atoms are divided into two sublattices with different magnetization directions. They give rise to a ferromagnetic component associated with an antiferromagnetic component. These structures, which are analyzed in terms of crystal field effects, result from a competition between a magnetocrystalline anisotropy and positive exchange interactions of Heisenberg type.  相似文献   

20.
The optical properties of Ln2Ti2S2O5 compounds (Ln=Nd, Sm, Gd, Tb, Dy, Ho, Er, and Y) have been measured. Diffuse reflectance spectra revealed a strong absorption band above 2 eV, which explains the color of the compounds. Moreover, other bands, with a lower intensity, have been attributed to 4f-4f rare earth transitions. In the case of neodymium the derived energy level scheme is rich enough to determinate a set of phenomenological crystal field parameters that correctly reproduce the spectrum. These parameters were also calculated from the crystallographic structure, in a good agreement with the experiment. Finally, the paramagnetic susceptibility, well reproduced by the calculation, confirms that the rare earth is in a trivalent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号