首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Here we employ high-quality samples of (Sr1−xLax)CuO2 and (Nd2−xCex)CuO4 and XANES spectroscopy at O-K, Cu-L2,3 and Ce-M4,5 edges to gain comprehensive understanding of the electronic structure and doping in n-type high-Tc superconductors. Not only common but also slightly different features are revealed for the two systems. From O-K-edge spectra, the UHB is found essentially independent of the electron-doping level for both the systems, in line with our understanding that the doped electrons do not go to the O site in n-type copper-oxide superconductors. Another common observation is that the main CuII peak at the Cu-L3 edge (due to transitions to the CuII-3d orbitals) systematically decreases in intensity upon electron doping, hence verifying the fact that the doped electrons go to the Cu site. The difference then between the two systems is that in (Sr1−xLax)CuO2 the weaker CuII peak due to transitions to the CuII-4s orbital depends on the degree of doping. Moreover, it was found that with increasing x, electron density increases much faster in (Sr1−xLax)CuO2 than in (Nd2−xCex)CuO4. This is a consequence of two phenomena: a tiny increase in oxygen content concomitant to the CeIV-for-NdIII substitution and the somewhat lower Ce-valence value of +3.8 compared to the nominal tetravalent state.  相似文献   

2.
The room temperature structures as well as the temperature-dependent conductivity and dielectric properties of the A3CoNb2O9 (A=Ca2+, Sr2+ and Ba2+) triple perovskites have been carefully investigated. A constrained modulation wave approach to Rietveld structure refinement is used to determine their room temperature crystal structures. Correlations between these crystal structures and their physical properties are found. All three compounds undergo insulator to semiconductor phase transitions as a function of increasing temperature. The hexagonal Ba3CoNb2O9 compound acts as an insulator at room temperature, while the monoclinic Ca3CoNb2O9 compound is already a semiconductor at room temperature. The measured dielectric frequency characteristics of the A=Ba compound are excellent.  相似文献   

3.
Single crystals of the double perovskite rhenates A2BReO6 (A=Sr, Ba; B=Li, Na) were grown out of molten hydroxide fluxes. Single crystals of orange/yellow Ba2LiReO6, Ba2NaReO6 and Sr2LiReO6 were solved in the cubic, Fm-3m space group with a=8.1214(11) Å, 8.2975(3) Å, and 7.9071(15) Å, respectively, while Sr2NaReO6 was determined to be monoclinic P21/n with a=5.6737(6) Å, b=5.7988(6) Å, c=8.0431(8) Å, and β=90.02(6) °. The cubic structure consists of a rock salt lattice of corner-shared ReO6 and MO6 (M=Li, Na) octahedra which, in the monoclinic structure, are both tilted and rotated. A discrepancy exists between the symmetry of Sr2LiReO6 indicated by the single-crystal refinement of flux-grown crystals (cubic, Fm-3m) and the symmetry indicated by the powder diffraction data collected on polycrystalline samples prepared by the ceramic method (tetragonal, I4/m). It is possible that the cubic crystals are a kinetic product that forms in small quantities at low temperatures, while the powder represents the more stable polymorph that forms at higher reaction temperature.  相似文献   

4.
Generation of holes is facilitated in the Cu(Ba0.8Sr0.2)2 (Yb1−xCax)Cu2O6+z (Cu-1212) system by two independent ways, i.e., by Ca substitution (0≤x≤0.35) and O doping (0<z<1). The distribution of holes between the CuO2-(Yb1−xCax)-CuO2 block containing two identical superconductive CuO2 planes and the “charge-reservoir” block consisting of a single CuOz chain has been quantitatively investigated by means of O K-edge and Cu L2,3-edge X-ray absorption near-edge structure (XANES) spectroscopy. The resultant values for the CuO2-plane hole concentration are compared with those calculated employing the bond-valence-sum (BVS) method from the neutron powder diffraction (NPD) data previously reported for the same samples. The results of the two methods are in good agreement. The two independent hole-doping ways are found to result in different distributions of holes over the crystal, i.e., different ratios of hole numbers at the CuO2 plane and the CuOz chain. With Ca substitution holes are directed efficiently into the CuO2 plane, while for O doping holes are more homogeneously distributed between the CuO2 plane and the CuOz chain. Moreover, the value of Tc at a fixed CuO2-plane hole concentration is shown to be higher for Ca-substituted than for O-doped samples.  相似文献   

5.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

6.
The compound EuAlF5, as well as the solid solutions Ca0.19(1)Eu0.81(1)AlF5, Sr0.15(1)Eu0.85(1)AlF5, Sr0.55(1)Eu0.45(1)AlF5, Sr0.77(1)Eu0.23(1)AlF5, and Ba0.62(1)Eu0.38(1)AlF5, crystallize in colorless tetragonal columns. These have been prepared by solid state reactions at 900°C, starting from mixtures of the binary fluorides. According to Vegard's rule the solid solution Sr1−xEuxAlF5 shows a linear dependence of the crystal volume on the molar ratio Eu/Sr. All crystal structures have been refined from single-crystal diffractometer data. EuAlF5 and the M1−xEuxAlF5 (M=Ca, Sr) compounds obtained are isotypic with β-SrAlF5. They crystallize in a superstructure in space group I41/a (no. 88) with 64 formula units and lattice parameters a≈19.9 Å, c≈14.3 Å. The structure is characterized by chains of trans-corner-sharing [AlF4/2F2/1] and branched [AlF5/1F1/2] octahedra forming a channel structure. Inside the channels isolated ordered dimeric units [AlF4/1F2/2]2 are located. The divalent metal atoms show coordination numbers 8 and 9; they connect the [AlF6] octahedra into a three-dimensional structure. Ba0.62(1)Eu0.38(1)AlF5 is isotypic with the corresponding Sr compound Ba0.43(1)Sr0.57(1)AlF5, and it crystallizes with 16 formula units and lattice parameters a=14.3860(7) Å, c=7.2778(3) Å in space group I4/m (no. 87). The network structure is identical with that of EuAlF5. Instead of the dimeric units, infinite chains [AlF4/1F2/2] of trans-corner-sharing [AlF6] octahedra extending along the c- axis are located inside the channels. The bridging fluorine atoms of this chain show large anisotropic displacement parameters, but no superstructure reflections have been observed for this compound.  相似文献   

7.
La-doped Sr2CoWO6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr2+ by La3+ induces a change of the tetragonal structure, space group I4/m of the undoped Sr2CoWO6 into the distorted monoclinic crystal structure, space group P21/n, Z=2. The structure of La-doped phases contains alternating CoO6 and (Co/W)O6 octahedra, almost fully ordered. On the other hand, the replacement of Sr2+ by La3+ induces a partial replacement of W6+ by Co2+ into the B sites, i.e. Sr2−xLaxCoW1−yCoyO6 (y=x/4) with segregation of SrWO4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.  相似文献   

8.
采用高温固相法制备了(Ca,Me)La4Si3O13∶Eu3+(Me=Sr,Ba)系列红色荧光体,考察了Eu3+掺杂浓度和Sr2+,Ba2+置换对荧光体结构和发光特性的影响。Eu3+最佳掺杂浓度为nEu3+∶nLa3+=1∶7,5D0-7F2与5D0-7F1跃迁发射强度比为2.55。Eu3+掺杂使晶胞参数a和c呈线性变小,对c的影响大于a,使a/c比增大。Sr2+和Ba2+分别置换基质中的Ca2+可以形成完全固溶体,晶胞参数随Sr2+或Ba2+的置换量增加呈线性增大,使a/c比减小。各发射峰强度在Sr2+置换量为0.4 mol时出现极大值,但随Ba2+置换量的增加而不断增强,全置换后荧光强度最大。荧光体的色坐标为(0.638 5,0.353 0)。  相似文献   

9.
Magnesium substitution in Nd0.7Sr0.3MnO3 has been studied by neutron powder diffraction. Polycrystalline samples of nominal compositions Nd0.7Sr0.3Mn1−yMgyO3 with y=0.0, 0.1, 0.2 and 0.3 were synthesized by the standard solid-state reaction method. Rietveld refinements of the neutron powder diffraction data showed that all samples had distorted perovskite structure of orthorhombic symmetry. Mg initially preferred to substitute for Nd and only at Mg concentration greater than 0.1, a substantial substitution for Mn occurred. Our study also showed that Mg-substitution did not change the crystal structure of Nd0.7Sr0.3MnO3.  相似文献   

10.
ABO3 amorphous materials, such as BaTiO3 (BT), SrTiO3 (ST), PbTiO3 (PT), and BaxSr1−xTiO3 (BST) have recently attracted a good deal of attention due to their ferroelectric and electro-optical properties. Intense photoluminescence at room temperature was observed in amorphous titanate doped with chromium (BaxSr1−xTi1−yCryO3) prepared by the polymeric precursor method. Results indicated that substantial luminescence at room temperature was achieved with the addition of small Cr contents to amorphous BaxSr1−xTi1−yCryO3. Further addition of Cr or crystallization were deleterious to the intensity of the luminescent peak obtained for excitation using λ=488.0 nm.  相似文献   

11.
Properties of Sr2Cu(PO4)2 and Ba2Cu(PO4)2 having [Cu(PO4)2] linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at TM=92 K for Sr2Cu(PO4)2 and TM=82 K for Ba2Cu(PO4)2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/kB=143.6(2) K for Sr2Cu(PO4)2 and g=2.073(4) and J/kB=132.16(9) K for Ba2Cu(PO4)2 (Hamiltonian H=JΣSiSi+1). The similar J/kB values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, TN, were below 0.45 K. Sr2Cu(PO4)2 and Ba2Cu(PO4)2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with kBTN/J<0.34% together with Sr2CuO3 (kBTN/J≈0.25%) and γ-LiV2O5 (kBTN/J<0.16%). Sr2Cu(PO4)2 and Ba2Cu(PO4)2 were stable in air up to 1280 and 1150 K, respectively.  相似文献   

12.
Strongly overdoped samples of the three-CuO2-plane copper-oxide superconductor, CuBa2Ca2Cu3O8+z or Cu-1223, were obtained through high-pressure synthesis and post-annealed to various hole-doping levels so as to have the value of Tc range from 65 to 118 K. A concomitant decrease in the average valence of copper from ∼2.20 to ∼2.05 was evidenced by means of wet-chemical and thermogravimetric analyses and Cu L-edge X-ray absorption near-edge structure (XANES) spectroscopy. The valence value as low as ∼2.05 that corresponds to the highest Tc (=118 K) may be understood by taking into account multiple ways for holes to be distributed among the different Cu-O layers. In terms of actual chemical composition of the Cu-1223 phase, both Cu L-edge and O K-edge XANES results suggest that some portion of charge-reservoir copper atoms may have been replaced by CO, i.e., (Cu1−xCx)Ba2Ca2Cu3O8+x+z. The variation range of excess oxygen was estimated at Δz≈0.3.  相似文献   

13.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7:0.03Eu,yCe3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7:0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f65d1-4f7跃迁,590~725 nm红光区窄带谱源于Eu3+5D0-7FJ (J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7:0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7:0.03Eu,yCe3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7:0.01Ce3+,0.03Eu的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

14.
Photoluminescence in the System A2II B1/4IIGd1/2?xEux1/4WO6 ? A8IIBIIGd2?xEuxW4O24 (AII, BII = Sr, Ba) The emission and excitation spectra for the series Sr8SrGd2?xEux□W4O24 (HT- and LT-modifications) and Sr9?yBayEu2□W4O24 are reported and discussed. HT- and LT-Sr8SrEu2□W4O24 show an intense red emission, no concentration quenching is present.  相似文献   

15.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

16.
The new compound Sr5(As2O7)2(AsO3OH) was synthesized under hydrothermal conditions. It represents a previously unknown structure type and belongs to a group of a few compounds in the system SrO-As2O5-H2O; (As2O7)4− besides (AsO3OH)2− groups have not been described yet. The crystal structure of Sr5(As2O7)2(AsO3OH) was determined by single-crystal X-ray diffraction (space group P21/n, a=7.146(1), b=7.142(1), , β=93.67(3)°, , Z=4). One of the five symmetrically unique Sr atoms is in a trigonal antiprismatic (Inorg. Chem. 35 (1996) 4708)—coordination, whereas the other Sr atoms adopt the commonly observed (“Collect” data collection software, Delft, The Netherlands, 1999; Methods Enzymol. 276 (1997) 307)—coordination. The position of the hydrogen atom was located in a difference Fourier map and subsequently refined with an isotropic displacement parameter. Worth mentioning is the very short hydrogen bond length Oh-H?O(1) of 2.494(4) Å; it belongs to the shortest known examples where the donor and acceptor atoms are crystallographically different. This hydrogen bond was confirmed by IR spectroscopy. In addition, Raman spectra were collected in order to study the arsenate groups.  相似文献   

17.
Layered compounds have been synthesized and structurally characterized for the n=5 and 6 members of the perovskite-related family La4Srn−4TinO3n+2 by combining X-ray diffraction and transmission electron microscopy. Their structure can be regarded as comprising [(La,Sr)5Ti5O17] and [(La,Sr)6Ti6O20] perovskite blocks joined by crystallographic shears along the a-axis, with consecutive blocks shifted by 1/2 [100]p. The n=5 member is similar to the previously reported n=5 member of other AnBnO3n+2-related series. The n=6 member, which has only been briefly reported in other systems previously, is also a well-behaved member of this AnBnO3n+2 series.  相似文献   

18.
In this work, we studied the catalytic activity of LaMnO3 and (La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for oxidation of NO and C10H22 and selective reduction of NO by C10H22. The catalytic performances of these perovskites were compared with that of a 2 wt% Pt/SiO2 catalyst. The La site substitution increased the catalytic properties for NO or C10H22 oxidation compared with the non-substituted LaMnO3 sample. For the most efficient perovskite catalyst, (La0.8Sr0.2)MnO3, the results showed the presence of two temperature domains for NO adsorption: (1) a domain corresponding to weakly adsorbed NO, desorbing at temperatures lower than 270 ℃ and (2) a second domain corresponding to NO adsorbed on the surface as nitrate species, desorbing at temperatures higher than 330 ℃. For the Sr-substituted perovskite, the maximum NO2 yield of 80% was observed in the intermediate temperature domain (around 285 ℃). In the reactant mixture of NO/C10H22/O2/H2O/He, (La0.8Sr0.2)MnO3 perovskite showed better performance than the 2 wt% Pt/SiO2 catalyst: NO2 yields reaching 50% and 36% at 290 and 370 ℃, respectively. This activity improvement was found to be because of atomic scale interactions between the A and B active sites, Sr2+ cation and Mn4+/Mn3+ redox couple. Thus, (La0.8Sr0.2)MnO3 perovskite could be an alternative free noble metal catalyst for exhaust gas after treatment.  相似文献   

19.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

20.
The quaternary manganese sulfides BaLn2MnS5 (Ln=La, Ce, Pr) consist of (MnS4)6− anions separated with short S?S distances slightly longer than the van der Waals distance. Nevertheless, these sulfides are known to undergo a three-dimensional (3D) antiferromagnetic ordering at a reasonably high temperature (i.e., TN=58.5, 62.0 and 64.5 K for Ln=La, Ce and Pr, respectively). The origin of this observation was probed by studying the Mn-S?S-Mn super-superexchange interactions of BaLn2MnS5 on the basis of spin dimer analysis. The non-bonding S?S contacts in the vicinity of the van der Waals distance are found essential in determining the strengths of the Mn-S?S-Mn super-superexchange interactions. The antiferromagnetic spin exchange between adjacent (MnS4)6− anions along the c-direction (J2) is calculated to be stronger than that in the ab-plane (J1) by a factor of ∼10, so that the strongly interacting spin units of BaLn2MnS5 (Ln=La, Ce, Pr) are 1D chains made up of the exchange paths J2. The relative strengths of the spin exchange interactions for the J1 and J2 paths are consistent with the finding that the Néel temperatures of BaLn2MnS5 are reasonably high, and they increase in the order BaLa2MnS5<BaCe2MnS5< BaPr2MnS5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号