首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new compound of sodium nonatitanate, Na2Ti9O19, has been prepared by the hydrothermal reactions of titanium dioxide gel with sodium hydroxide aqueous solution. The crystal has a C-centered monoclinic lattice with the unit-cell dimensions a = 12.2, b = 3.78, c = 15.3Å, and β = 98.0°. It is expected that the structure consists of a framework different from those in tri-, hexa-, hepta-, and octatianates.  相似文献   

2.
Na6B13O22.5 (B/Na=2.17) single crystals were obtained by heating, melting and appropriately cooling borax, Na2[B4O5(OH)4]·8H2O. Its formula has been determined by the resolution of the structure from single-crystal X-ray diffraction data. The compound crystallizes in the noncentrosymmetric orthorhombic Iba2 space group, with the following unit cell parameters: a=33.359(11) Å, b=9.554(3) Å, c=10.644(4) Å; V=3392.4(19) Å3; Z=8. The crystal structure was solved from 3226 reflections until R1=0.0385. It exhibits a three-dimensional framework built up from BO3 triangles (Δ) and BO4 tetrahedra (T). Two kinds of borate groups can be considered forming two different double B3O3 rings: two B4O9 (linkage by two boron atoms) and one B5O11 (linkage by one boron atom); the shorthand notation of the new fundamental building block (FBB) existing in this compound is: 13: ∞3 [(5: 3Δ+2T)+2(4: 2Δ+2T)]. The discovery of this new borate questions the real number of Na2B4O7 varieties. The existence of Na6B13O22.5 (B/Na=2.17) and of another recently discovered borate, Na3B7O12 (B/Na=2.33; FBB 7: ∞3 [(3: 2Δ+T)+(3: Δ+2T)+(1: Δ)], with a composition close to the long-known borate α-Na2B4O7 (B/Na=2; FBB 8: ∞3 [(5: 3Δ+2T)+(3: 2Δ+T)], may explain the very complex equilibria reported in the Na2O-B2O3 phase diagram, especially in this range of composition.  相似文献   

3.
李国然  孙帅  高学平 《电化学》2012,(2):135-139
以金红石型TiO2和NaOH为原料,由水热反应制备Na2Ti6O13纳米管.然后,在含有0.1 mol.L-1NaOH的葡萄糖水溶液中反应4 h制得碳包覆的Na2Ti6O13纳米管.X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析表明,该碳包覆Na2Ti6O13纳米管外径约14~19 nm,内径约2~5 nm,长度为数百纳米,有一层厚度约为2 nm的碳层包覆在纳米管外壁.以其作为锂离子电池负极材料,恒电流充放电测试表明,在50 mA.g-1电流密度下首周可逆容量达到161 mAh.g-1,循环100周后容量保持在147 mAh.g-1.相比于Na2Ti6O13纳米管,提高了20%以上.电流密度升至1600 mA.g-1充放电,碳包覆Na2Ti6O13纳米管可逆容量仍有70 mAh.g-1左右,远高于Na2Ti6O13纳米管,表现出良好的倍率性能.  相似文献   

4.
Na6Co2O6 was synthesized via the azide/nitrate route by reaction between NaN3, NaNO3 and Co3O4. Stoichiometric mixtures of the starting materials were heated in a special regime up to 500°C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of the reaction product at 500°C for 500 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structure (, Z=1, a=5.7345(3), b=5.8903(3), c=6.3503(3) Å, α=64.538(2), β=89.279(2), γ=85.233(2)°, 1006 independent reflections, R1=8.34% (all data)), cobalt is tetrahedrally coordinated by oxygen. Each two CoO4 tetrahedra are linked through a common edge forming Co2O66- anions. Cobalt ions within the dimers, being in a high spin state (S=2), are ferromagnetically coupled (J=17 cm-1). An intercluster spin exchange (zJ′=−4.8 cm-1) plays a significant role below 150 K and leads to an antiferromagnetically ordered state below 30 K. Heat capacity exhibits a λ-type anomaly at this temperature and yields a value of 19.5 J/mol K for the transition entropy, which is in good agreement with the theoretical value calculated for the ordering of the ferromagnetic-coupled dimers. In order to construct a model for the spin interactions in Na6Co2O6, the magnetic properties of Na5CoO4 have been measured. This compound features isolated CoO4 tetrahedra and shows a Curie-Weiss behavior (μ=5.14 μB, Θ=−20 K) down to 15 K. An antiferromagmetic ordering is observed in this compound below 10 K.  相似文献   

5.
Na3Cu2O4 and Na8Cu5O10 were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN3 and NaNO3. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na3Cu2O4: P21/n, Z=4, a=5.7046(2), b=11.0591(4), c=8.0261(3) Å, β=108.389(1)°, 2516 independent reflections, R1(all)=0.0813, wR2 (all)=0.1223; Na8Cu5O10: Cm, Z=2, a=8.228(1), b=13.929(2), , β=111.718(2)°, 2949 independent reflections, R1(all)=0.0349, wR2 (all)=0.0850), the main feature of both crystal structures are CuO2 chains built up from planar, edge-sharing CuO4 squares. From the analysis of the Cu-O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na3Cu2O4 these ions alternate in the chains, in Na8Cu5O10 the periodically repeated part consists of five atoms according to CuII-CuII-CuIII-CuII-CuIII. The magnetic susceptibilities show the dominance of antiferromagnetic interactions. At high temperatures the compounds exhibit Curie-Weiss behaviour (Na3Cu2O4: , , Na8Cu5O10: , , magnetic moments per divalent copper ion). Antiferromagmetic ordering is observed to occur in these compounds below 13 K (Na3Cu2O4) and 24 K (Na8Cu5O10).  相似文献   

6.
通过溶胶凝胶-水热合成法制备出一种新型的硅钛酸钠孔道结构化合物(Na4Ti4Si3O10)。经XRD、SEM、TEM、X-荧光分析等方法对其晶体结构进行了表征。晶体学数据为:P43a=b=7.8110?、c=11.9735?、α=β=γ=90°。该化合物具有三维空间结构,组成基本单元为Ti-O八面体簇和Si-O四面体,孔道结构为两端都开放的管状毛细孔。微观形貌为规整的四方晶粒,粒子的平均尺寸为20nm;研究了Na4Ti4Si3O10的化学稳定性、热稳定性以及在整个pH范围内的除铯性能。  相似文献   

7.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

8.
The compound Na5Li3Ti2S8 has been synthesized by the reaction of Ti with a Na/Li/S flux at 723 K. Na5Li3Ti2S8 crystallizes in a new structure type with four formula units in space group C2/c of the monoclinic system. The structure contains three crystallographically independent Na+ cations and two crystallographically independent Li+ cations. Na5Li3Ti2S8 possesses a channel structure that features two-dimensional layers built from Li(1)S4 and TiS4 tetrahedra. The layers, which are stacked along c, comprise eight-membered rings and sixteen-membered rings. Na(3)+ cations are located between the eight-membered rings and Na(1)+, Na(2)+, and Li(2)+ cations are located between the sixteen-membered rings. These cations are each octahedrally coordinated by six S2− anions. The ionic conductivity σT of Na5Li3Ti2S8 ranges from 8.8×10−6 S/cm at 303 K to 3.8×10−4 S/cm at 483 K. The activation energy Ea is 0.40 eV.  相似文献   

9.
The new complex oxide Na2SrV3O9 was synthesized and investigated by means of X-ray diffraction, electron microscopy and magnetic susceptibility measurements. This oxide has a monoclinic unit cell with parameters a=5.416(1) Å, b=15.040(3) Å, c=10.051(2) Å, β=97.03(3)°, space group P21/c and Z=4. The crystal structure of Na2SrV3O9, as determined from X-ray single-crystal data, is built up from isolated chains formed by square V4+O5 pyramids. Neighboring pyramids are linked by two bridging V5+O4 tetrahedra sharing a corner with each pyramid. The Na and Sr atoms are situated between the chains. Electron diffraction and HREM investigations confirmed the crystal structure. The temperature dependence of the susceptibility indicates low-dimensional magnetic behavior with a sizeable strength of the magnetic intra-chain exchange J of the order of 80 K, which is very likely due to superexchange through the two VO4 tetrahedra linking the magnetic V4+ cations.  相似文献   

10.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

11.
Due to its low cost and natural abundance of sodium, Na-ion batteries(NIBs) are promising candidates for large-scale energy storage systems. The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs. Low-voltage anode materials, however, are severely lacking in NIBs. Of all the reported insertion oxides anodes, the Na2Ti3O7 has the lowest operating voltage(an average potential of 0.3 V vs. Na+/...  相似文献   

12.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

13.
Sodium orthonitrate (Na3NO4) is an unusual phase containing the first example of isolated tetrahedrally bonded NO43− groups. This compound was obtained originally by heating together mixtures of Na2O and NaNO3 for periods extending up to >14 days in evacuated chambers. Considering the negative volume change between reactants and products, it was inferred that a high-pressure synthesis route might favor the formation of the Na3NO4 compound. We found that the recovered sample is likely to be a high-pressure polymorph, containing NO43− groups as evidenced by Raman spectroscopy. The high-pressure behavior of Na3NO4 was studied using Raman spectroscopy and synchrotron X-ray diffraction in a diamond anvil cell above 60 GPa. We found no evidence for major structural transformations, even following laser heating experiments carried out at high pressure, although broadening of the Raman peaks could indicate the onset of disordering at higher pressure.  相似文献   

14.
Two new ternary compounds BaNd2Ti3O10 (1:1:3) and BaNd2Ti5O14 (1:1:5) have been identified in the BaONd2O3TiO2 system. Single crystals of the compounds were grown and unit cell dimensions and space group symmetry were determined. BaNd2Ti3O10 is orthorhombic with a = 3.8655 ± 0.0003, b = 28.156 ± 0.003 and c = 7.6221 ± 0.0007 Å and possible space groups are Cmcm or Cmc2. The compound melts congruently at 1640 ± 20°C. BaNd2Ti5O14 is also orthorhombic with a = 22.346 ± 0.002, b = 12.201 ± 0.001 and c = 3.8404 ± 0.0003 Å and possible space groups are Pbam and Pba2. This compound melts congruently at 1540 ± 20°C. Single crystals of the binary compound Nd4Ti9O24 were also grown and found to be orthorhombic with a = 35.289 ± 0.003, b = 13.991 ± 0.001, c = 14.479 ± 0.001 Å, space group Fddd.  相似文献   

15.
Bi2Ti2O7 has been synthesized using a co-precipitation route from H2O2/NH3(aq) solutions of titanium with aqueous bismuth nitrate. The stoichiometric material crystallizes into a pale yellow cubic pyrochlore phase. A powder X-ray diffraction study showed this crystallization to be very temperature sensitive, the pure phase can only be obtained within a few degrees of 470°C. Time-of-flight powder neutron diffraction studies of Bi2Ti2O7 (Space group , a=10.37949(4) Å at ambient temperature, Z=8, Rp=3.95%, Rwp=4.75%) revealed positional disorder in the bismuth site and in the O′ oxide site both at ambient temperature and at 2 K.  相似文献   

16.
The ternary stoichiometric perovskite compounds, Na0.75Ln0.25Ti0.5Nb0.5O3 (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) are intermediate members of the NaNbO3-Na0.5Ln0.5TiO3 solid solution series. The compounds were synthesized by standard ceramic methods at 1300 °C followed by annealing at 800 °C and quenching to ambient conditions. Rietveld analysis of the powder X-ray diffraction patterns shows that the compounds with Ln ranging from Pr to Tm adopt the orthorhombic space group Pbnm (ab≈√2ap; c≈2ap; Z=4) and the GdFeO3 structure. In contrast, Na0.75La0.25Ti0.5Nb0.5O3 adopts the orthorhombic space group Cmcm (abc≈2ap; Z=4). All cations located at the A- and B-sites are disordered in these compounds. The unit cell parameters and cell volumes of the compounds decrease regularly with increasing atomic number of the Ln cation. The Pbnm compounds with Ln from Sm to Tm have A-site cations in eight-fold coordination. A-site cations in the Pr and Nd compounds are considered to be in ten-fold coordination. Analysis of the crystal chemistry of the Pbnm compounds shows that B-site cations enter the second coordination sphere of the A-site cations for compounds with Ln from Tb to Tm as the A-B intercation distances are less than the maximum A-IIO(2) bond lengths. The [111] tilt angles of the (Ti,Nb)O6 polyhedra in the Pbnm compounds increase with increasing atomic number from 11.1° to 15.8° and are less than those observed in lanthanide orthoferrite and orthoscandate perovskites. These data are considered as relevant to the sequestration of lanthanide fission products in perovskite and the structure of lanthanide-bearing perovskite-structured minerals.  相似文献   

17.
Two organically templated zincophosphites, (C6H14N2)·[Zn3(HPO3)4] and (C4H14N2)·[Zn3(HPO3)4] have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction. (C6H14N2)·[Zn3(HPO3)4] crystallizes in the triclinic space group , with cell parameters, a=9.363(4) Å, b=10.051(4) Å, c=10.051(4) Å, α=85.777(13)°, β=82.091(9)°, and γ=79.783(9)°. (C4H14N2)·[Zn3(HPO3)4] crystallizes in the monoclinic space group P21/c, with cell parameters, a=9.9512(3) Å, b=10.1508(3) Å, c=17.8105(5) Å, and β=95.6510(10)°. Although the two structures are different, they have the same anionic framework compositions of [Zn3(HPO3)4]2−. Their frameworks are built up from strictly alternating ZnO4 tetrahedra and HPO3 pseudo pyramids by sharing vertexes. There exist channels with an eight-membered ring window along the a- and c-axis. Powder X-ray diffraction, IR spectroscopy, 31P MAS solid-state NMR, thermogravimetric and differential thermal analyses were also carried out.  相似文献   

18.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

19.
In this paper, hierarchically porous Fe2O3/CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates. The structure of composite monoliths was characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption-desorption. The results indicated that the molar ratio of Fe to Cu had a great influence on the crystal phase of Fe2O3, pore size and the structure of the macroporous wall. The Fe2O3/CuO composite monoliths consist of hierarchically macroporous and mesoporous structure, while the sample with the Fe/Cu molar ratio of 2 : 1 possesses tighter wall structure than other samples. It is expected that as-prepared Fe2O3/CuO composite monoliths have potential applications in several fields as catalysts, catalyst supports, chemical sensors and high-performance liquid chromatography (HPLC).  相似文献   

20.
Subsolidus phase relation studies in the NaSb3O7-Na3SbO4-CuO-CuSb2O6 quadrangle of Na2O-CuO-Sb2On system at 1123-1173 K revealed the formation of one new compound Na3Cu2SbO6. It is a superstructure derived from α-NaFeO2 type, space group C2/m, lattice constants: a=5.6759(1) Å, b=8.8659(1) Å, c=5.8379(1) Å, β=113.289(1)°. All ions are in octahedral environment, but CuO6 polyhedron exhibits strong elongation due to Jahn-Teller effect (Cu-O: 2.000(2) Å×2, 2.021(2) Å×2, 2.494(3) Å×2), whereas SbO6 octahedron is almost regular. The relationship to other similar superlattices is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号