首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Polystyrene microspheres having roughly the same size but different negative surface charge densities were prepared by emulsion polymerization. The amount of sulfate groups on the surface of the particles was controlled by variation of the amount and the decomposition rate of the initiator used, potassium, persulfate. After the cleaning process involving dialysis and extensive ultrafiltration the surface-charge density of the samples was determined and their electrokinetic behavior was studied. A simple model based on the Gouy–Chapman theory and the O’Brian–White approach allows the calculation of the dependence of the electrophoretic mobility on salt concentration. Comparison of the theoretical and experimental curves showed that they were in good agreement in a number of qualitative features. Moreover, the model revealed that a monotonously increasing zeta potential with falling electrolyte concentration results in a mobility maximum, and that this so-called atypical behavior is in accordance with the standard electrokinetic theory. No ion adsorption mechanism or the existence of a charged hairy layer, current standard explanations for this anomality, had to be invoked. Received: 13 February 1997 Accepted: 2 June 1997  相似文献   

2.
The Joule heating effect is inevitable in electrophoresis operations. To assess its influence on the performance of electrophoresis, we consider the case of a charge-regulated particle in a solution containing multiple ionic species at temperatures ranging from 298 to 308 K. Using an aqueous SiO(2) dispersion as an example, we show that an increase in the temperature leads to a decrease in both the dielectric constant and the viscosity of the liquid phase, and an increase in both the diffusivity of ions and the particle surface potential. For a particle having a constant surface potential, its electrophoretic mobility is most influenced by the variation in the liquid viscosity as the temperature varies, but for a charged-regulated particle both the liquid viscosity and the surface potential can play an important role. Depending upon the level of pH, the degree of increase in the mobility can be on the order of 40% for a 5 K increase in the temperature. The presence of double-layer polarization, which is significant when the surface potential is sufficiently high, has the effect of inhibiting that increase in the mobility. This implies that the influence of the temperature on the mobility of the particle is most significant when the pH is close to the point of zero charge.  相似文献   

3.
This report focuses on measuring the individual electrophoretic mobilities of liposomes with different pH gradients across their membrane using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The results from the individual analysis of liposomes show that, using surface electrostatic theories and the electrokinetic theory as the first approximation, zeta potential contributes more significantly to the electrophoretic mobility of liposomes than liposomal size. For liposomes with an outer pH 7.4 (pH(o) 7.4) and a net negative outer surface charge, the most negative electrophoretic mobilities occur when the inner pH (pH(i)) is 6.8; at higher or lower pH(i), the electrophoretic mobilities are less negative. The theories mentioned above cannot explain these pH-induced electrophoretic mobility shifts. The capacity theory, predicting an induced electrical charge on the surface of liposomes, can only explain the results at pH(i) > 6.8. In this report, we hypothesize that there is a flip-flop process of phospholipids, which refers to the exchange of phospholipids between the outer and inner layers of the membrane. This flip-flop is caused by the pH gradient and membrane instability and results in the observed electrophoretic mobility changes when pH(i) is <6.8. Furthermore, it is found that the mobilities of acidic organelles are consistent with the predictions of liposome models we used here.  相似文献   

4.
The interactions of unilamellar vesicles obtained by the incorporation of (1,2,3,4,5,6)-tridecafluoro-hexadecane (F6H10 diblock) to dipalmitophosphatidyl-choline (DPPC), with Gd3+, Ca2+, Na+ ions were studied by electrophoretic measurements, dynamic light scattering and differential scanning calorimetry (DSC). Electrophoretic mobility measurements on unilamellar vesicles as a function of ion concentrations show that the vesicles adsorb the different ions employed. DSC has been used to determine the effect of diblock on the transition temperature (T c) and on the change of enthalpy (ΔH c) associated with the process.  相似文献   

5.
Thermotropic phase behaviors of paeonol-encapsulated liposomes containing stigmasterol or cholesterol have been investigated by differential scanning calorimetry. We compared the thermotropic phase behavior of pure dipalmitoylphosphatidylcholine (DPPC) liposomes, sterol/DPPC liposomes, and paeonol/sterol/DPPC liposomes increasing the ratio of paeonol to sterol from 0 to 1, by analyzing the calorimetric parameters of main phase transition of liposomes including phase transition temperature (onset temperature and peak temperature) and phase transition cooperativity. The results showed that paeonol could incorporate into the hydrophobic region of DPPC, thus, decrease phase transition temperature of DPPC. Though stigmasterol interacts with DPPC less favorably than cholesterol, thermotropic phase behavior of paeonol/cholesterol/DPPC liposomes and that of paeonol/stigmasterol/DPPC liposomes are very similar. A phase separation occurred when the molar ratio of paeonol to sterol reached 1:1 in paeonol-encapsulated liposomes, where a paeonol-rich domain coexisted with a sterol-rich domain. The packing order of acyl chains of DPPC in sterol-rich domain is a little higher than that in paeonol-rich domain.  相似文献   

6.
It is often assumed in the conventional electrophoresis analysis that the liquid phase contains only one kind of each cation and anion. That analysis is extended to the case where the liquid phase contains multiple ionic species in this study so that the conditions considered are closer to reality. Using a dispersion of SiO(2) particles, which is of a charge-regulated nature, as an example, where the dispersion pH is adjusted by HCl and NaOH, numerical simulation is conducted to examine the electrophoretic behaviors of the particle under various conditions. We show that the presence of multiple ionic species is capable of yielding profound and interesting electrophoretic behaviors, which are justified by the experimental data in the literature. In addition, we show that two types of double-layer polarization (DLP) are present that have not been reported previously in the electrophoresis analyses. Type I DLP, which reduces the mobility of a particle, occurs inside the double layer, and type II DLP, which raises that mobility, occurs immediately outside the double layer.  相似文献   

7.
Liu KL  Hsu JP  Tseng S 《Electrophoresis》2011,32(21):3053-3061
The influence of the physical properties of the membrane layer of a soft particle, which comprises a rigid core and a porous membrane layer, on its electrophoretic behavior, is investigated. Because that influence was almost always neglected in the previous studies, the corresponding results can be unrealistic. The applicability of the model proposed is verified by the available theoretical and experimental results. The electrophoretic mobility of the particle under various conditions is simulated through varying the dielectric constant, the thickness, and the drag coefficient of the membrane layer, and the bulk ionic concentration. We show that under typical conditions, the deviation in the electrophoretic mobility arising from assuming that the dielectric constant of the membrane layer is the same as that of the bulk liquid phase can be in the order of 50%. In addition, the thicker the membrane layer and/or the higher the bulk ionic concentration, the larger the deviation. If the surface of the core of the particle is charged, as in the case of inorganic particles covered by an artificial membrane layer, the deviation at constant core surface potential is larger than that under other types of charged conditions. However, if the surface of the core is uncharged, as in the case of biocolloids, then that deviation becomes negligible. These findings are of fundamental significance to theoreticians in their analysis on the electrokinetic behaviors of soft particles, and to experimentalists in the interpretation of their data.  相似文献   

8.
Electrical properties of cholesterol interfaces have been investigated. For this purpose electroosmotic and hydrodynamic permeation of water, sodium chloride, barium chloride, aluminum chloride, and urea solutions across a cholesterol plug have been investigated. Dependence of electroosmotic permeability on concentration of electrolytes has also been studied. Electrophoretic mobility of cholesterol particles of known size distribution and dispersed in solutions of varying concentrations of electrolytes and urea has also been studied. The data have been used to estimate ζ potentials in order to have a plausible picture of the electrical double layer at the cholesterol/ solution interfaces.  相似文献   

9.
The capillary electrophoretic behavior of 44 aromatic organic ions was investigated. The observed ionic radii (r(obs0)) for the aromatic organic ions were obtained from the electrophoretic mobilities of sodium tetraborate (pH 9.2), potassium tetraborate (pH 9.2), ammonium borate (pH 9.2), and trisodium phosphate (pH 11.7) buffers with zero ionic strength. The linear relationships between the r(obs0)) values and the ionic radii (r(calc)), calculated by either the AM1 or PM3 method, were determined for benzyltrialkylammonium and aromatic sulfonate ions. However, the r(obs0)) values were constant for the aromatic carboxylate ions in buffers, in spite of the different r(calc) values. This indicates that aromatic carboxylate ions, such as benzenecarboxylate, pyridinecarboxylate, naphthalenecarboxylate, and anthracenecarboxylate ions, migrate as planar ions in buffers, whereas aromatic sulfonate ions could migrate as approximately spherical ions.  相似文献   

10.
11.
Zwitterionic polymers were prepared by quaternizing polyvinylpyridine (DP = 1100) with bromoacids (Br(CH2)nCOOH, where n = 1, 2, 3, and 5). The resulting polymers were then added to unilamellar liposomes composed of egg lecithin or dipalmitoylphosphatidylcholine admixed with 20 mol % of cardiolipin (a phospholipid with two negative charges). These systems were compared (along with polyethylvinylpyridinium chloride, a polycation) by light scattering, electrophoretic mobility, fluorescence, and high-sensitivity differential scanning calorimetry. The external zwitterionic polymers induce no flip-flop of cardiolipin from the inner leaflet to the outer leaflet as does the polycation. Aside from this similarity, the four zwitterionic polymers all behave differently from each other toward the anionic liposomes: (a) For n = 1, there is no detectable interaction between the polymer and the liposomes. (b) For n = 2, electrostatic attraction induces polymer-liposome association (reversed by the addition of NaCl) that maintains the original negative charge on the liposome. Aggregation of the liposomes accompanies polymer adsorption. (c) For n = 3, electrostatic binding also occurs along with aggregation. However, the binding is so strong that NaCl is unable to induce polymer/liposome dissociation. (d) For n = 5, there is polymer binding and NaCl-promoted dissociation but no substantial aggregation. These differences among the closely related polymers are discussed and analyzed in molecular terms.  相似文献   

12.
The electrophoresis of a soft particle comprising a rigid core and a charged porous membrane layer in a narrow space is modeled. This simulates, for example, the capillary electrophoresis of biocolloids such as cells and microorganisms, and biosensor types of device. We show that, in addition to the boundary effect, the effects of double-layer polarization (DLP) and the electroosmotic retardation flow can be significant, yielding interesting electrophoretic behaviors. For example, if the friction coefficient of the membrane layer and/or the boundary is large, then the DLP effect can be offset by the electroosmotic retardation flow, making the particle mobility to decrease with increasing double layer thickness, which is qualitatively consistent with many experimental observations in the literature, but has not been explained clearly in previous analyses. In addition, depending upon the thickness of double layer, the friction of the membrane layer of a particle can either retard or accelerate its movement, an interesting result which has not been reported previously. This work is the first attempt to show solid evidence for the influence of a boundary on the effect of DLP and the electrophoretic behavior of soft particles. The model proposed is verified by the experimental data in the literature. The results of numerical simulation provide valuable information for the design of bio-analytical apparatus such as nanopore-based sensing applications and for the interpretation of relevant experimental data.  相似文献   

13.
When exposed to the intracellular environment fluorescent probes sensitive to pH exhibit changes of photophysical characteristics as a result of an interaction of the dye molecule with cell constituents such as proteins, lipids or nucleic acids. This effect is reflected in calibration curves different from those found with the same dye in pure buffer solutions. To study an interaction of the probe 5'(and 6')-carboxy-10-dimethylamino-3-hydroxy- spiro[7H-benzo[c]xanthene-7,1'(3H)-isobenzofuran]-3'-one (carboxy SNARF-1) with membrane lipids, we measured its fluorescence in model systems of large unilamellar vesicles (LUV) prepared by extrusion. When the dye was removed from the bulk solution by gel filtration the relative fluorescence intensity of the lipid-bound dye form was enhanced, showing a strong interaction of the dye molecule with LUV membrane lipids. Surprisingly, the dye molecules seem to be bound predominantly to the outer surface of the lipid bilayer. The same situation was found with small unilamellar vesicles prepared by sonication. This effect makes it difficult to use carboxy SNARF-1 for measurements of the internal pH in suspensions of liposomes.  相似文献   

14.
The correlation of electrophoretic migration behavior in free-flow zone electrophoresis (FFZE) and electrophoretic titration curve (ETC) has been explored. It is shown that the ETC of a protein or a mixture of proteins can be used to predict the fraction numbers at which those proteins elute in a preparative scale FFZE experiment. The ETC is a quick and effective way to choose optimal buffer conditions in FFZE. FFZE is employed to determine the isoelectric points (pI) of proteins whose pIs lie beyond the range of IEF 3-9 gels. It is found that separations in FFZE are governed by the net surface charge of the proteins.  相似文献   

15.
Ribonuclease U2 is a low-molecular-weight acidic protein with three disulfide bridges. This protein displays an anomalous electrophoretic behavior on standard SDS-PAGE. The electrophoretic mobility of the nonreduced protein roughly corresponds to its molecular mass while the migration of the reduced protein would be in accordance with the expected molecular mass of the protein dimer. This study reveals that the protein does not bind SDS under the SDS-PAGE conditions, its electrophoretic mobility being only determined by its electrostatic charge and hydrodynamic properties. In addition, the nonreduced protein cannot be blotted to a membrane. Unfolding of the protein upon reduction of its disulfide bridges enables electrotransference to membranes due to a restricted diffusion along the electrophoresis gel.  相似文献   

16.
A phenomenological approach was presented to describe the retention behaviors of solutes in capillary electrochromatography (CEC). Equations for calculation of the retention time and actual chromatographic retention factor for ionic solutes, weak monoprotic acid and weak monoprotic base were derived, which can be described by two general expressions regardless the charge status of the solute. The general expressions enable calculation of the retention time and retention factor in CEC from chromatographic and electrophoretic data, which were experimentally verified with a variety of compounds and a variety of CEC modes. Based on this approach, the chromatographic retention and the electrophoretic migration in the CEC systems studied were found to be two independent processes. The validity of this approach was also discussed.  相似文献   

17.
The effect of 2,4-dichlorophenol (DCP) on the main transition and pretransition of fully hydrated (20 mass%) dipalmitoylphosphatidylcholine (DPPC) multilamellar liposomes has been studied by differential scanning calorimetry (DSC). It was observed that an increase in the molar ratio of DCP/DPPC (from 4·10-5 up to 2·10-2) causes progressive reductions in the temperature and enthalpy of the pretransition. The higher concentration of DCP eliminates the pretransition. The influence of DCP on the main transition in this molar ratio range is not drastic, but a decrease in temperature and in the enthalpy values was observed. In the molar ratio range (from 2·10-1 up to 4·10-1) the DSC scans show multiple main transition peaks instead of the characteristic single peak of the main transition. Above a DCP/DPPC molar ratio of 0.6 a new peak appears at 25°C having about the same transition enthalpy as the main transition of the pure system.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Cationic liposomes are studied mainly as nonviral nucleic acid delivery systems and to a lesser extent as carriers/adjuvants of vaccines and as low-molecular-weight drug carriers. It is well established that the performance and the biological activity of liposomes in general are strongly related to their physicochemical properties. We investigated the thermotropic behavior and the size distribution of mixed cationic liposomes formulated with different percentages of 1,2 dimyristoyl-sn-glycero-3-phosphatidylcholine and one of four cationic amphiphiles characterized by a pyrrolidinium headgroup with the aim of achieving a better understanding of how the molecular structure of the cationic amphiphile and its mole percentage affect the physicochemical properties of the liposomes. Multilamellar vesicles and large unilamellar vesicles were studied by differential scanning calorimetry and turbidity, respectively, to characterize the thermotropic behavior and lipid phase, whereas dynamic light scattering was used to determine size distribution. This study shows that subtle modifications in the cationic amphiphile's molecular structure and in liposome composition may have dramatic effects on the organization of the liposome bilayer and hence on the morphological and physicochemical features of the liposomes, thus being highly relevant to the biological features investigated previously.  相似文献   

19.
The solubilization dynamics of dimyristoylphosphatidylcholine (DMPC) liposomes, as induced by sodium dodecyl sulfate (SDS), were investigated; this investigation was motivated by several types of atypical behavior that were observed in the solubilization in this system. The liposomes and surfactants were mixed in a microchip, and the solubilization reaction of each liposome was observed using a microscope. We found that solubilization occurred not only via a uniform dissolution of the liposome membrane, but also via a dissolution involving the rapid motion of the liposome, or via active emission of protrusions from the liposome surface. We statistically analyzed the distribution of these patterns and considered hypotheses accounting for the solubilization mechanism based on the results. When the SDS concentration was lower than the critical micelle concentration (CMC), the SDS monomers entered the liposome membrane, and mixed micelles were emitted. When the SDS concentration was higher than the CMC, the SDS micelles directly attacked the liposome membrane, and many SDS molecules were taken up; this caused instability, and atypical solubilization patterns were triggered. The size dependence of the solubilization patterns was also investigated. When the particle size was smaller, the SDS molecules were found to be homogeneously dispersed throughout the whole membrane, which dissolved uniformly. In contrast, when the particle size was larger, the density of SDS molecules increased locally, instability was induced, and atypical dissolution patterns were often observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号