首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用朗缪尔探针对一个新颖的双谐振腔多功能PSII系统的微波ECR等离子体进行了诊断,得出了会切场中工作气体压强和微波功率对等离子体密度和电子温度的影响,及真空室内等离子体的分布。  相似文献   

2.
Very large volume (>2 m3) homogeneous maxwellian plasmas in the 109?1010cm?3 density range have been easily obtained by using a microwave electron cyclotron resonance source operating at 2.45 GHz. The magnetic multiple device has proved its efficiency in confining plasmas containing no primary electrons.  相似文献   

3.
It is shown theoretically and experimentally that stochastic heating of plasma electrons is highly efficient. Calculations have shown that over the course of 100 periods of an external microwave field the kinetic energy of the particles reaches values of around 1.0 MeV and the average energy reaches values of the order of 0.3 MeV in the field of two oppositely propagating characteristic (eigen) waves of a cylindrical waveguide, with amplitudes 24 kV/cm in a 1 kG stationary magnetic field. Stochastic instability develops as a result of overlapping of non-linear cyclotron resonances. The experimental results agree with the theory: When these waves are excited by a 0.9 MW external source, above a threshold of 0.45 MW one obtains x rays with a photon energy corresponding to a maximum electron energy of the order of 1 MeV over about 800 periods of the external microwave field. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 11, 806–811 (10 June 1999)  相似文献   

4.
5.
6.
When ohmic heating power is applied during the microwave discharge at the electron cyclotron resonance, the plasma current and density build-up become fast and the loop voltage required to start the tokamak discharge decreases. The micro-wave burst observed in the initial stage is reduced and the burst of hard X-rays, occurring at the quasi-steady stage of discharge in the case of no microwave injection, disappears, suggesting that the production of run-away electrons is suppressed strongly.  相似文献   

7.
高碧荣  刘悦 《物理学报》2011,60(4):45201-045201
基于漂移扩散近似,在轴对称假设下,对电子回旋共振等离子体源腔室内的等离子体建立了二维流体模型.采用有限差分法对所建立的模型进行了自洽数值模拟,得到了等离子体密度均匀性随时间演化的数值结果.通过对数值结果的分析,研究了背景气体压强、微波功率和磁场线圈电流对等离子体密度均匀性的影响.研究表明,在电离初期,电子密度的均匀性好于离子密度的均匀性.在电离后期,离子密度的均匀性好于电子密度的均匀性.随着背景气体压强的增大,电子密度和离子密度的均匀性都在增加,且离子密度的均匀性增加的更快.随着微波功率的增大,电子密度和 关键词: 等离子体密度均匀性 背景气体压强 微波功率 磁场线圈电流  相似文献   

8.
The generation and control of microwave electron cyclotron resonance (ECR) plasma cathode electron beam is studied experimentally. A complete set of discharge, electron beam extraction, focusing and measuring system was set up. The characteristics and performance of microwave ECR plasmas as electron beam extraction source were studied by measuring the current of water cooling target and the beam spot size on the target. Experimental results indicated that both microwave input power and accelerating voltage are conducive to improving electron beam current. The influence of gas pressure on the electron beam current was complex. With the increase of gas pressure, the electron beam current is characterized by decreasing first and then increasing. The extracted electron current of microwave ECR plasma cathode can reach 75mA at gas pressure of 7×10−4Pa, and the energy of the electron beam can reach 9keV. The energy utilization can reach 0.6. By adjusting the current of the focusing coil, the diameter of electron beam spot is reduced from 20mm to 13mm and the electron beam current keeps the value unchanged.  相似文献   

9.
介绍了实验室研制的微波电子回旋共振(ECR)等离子体阴极电子束系统及初步研究结果,该系统包括微波ECR 等离子体源、电子束引出极、聚焦线圈等。通过测量水冷靶电流和靶上的束斑尺寸,实验研究了微波ECR 等离子体阴极电子束的流强、聚束性能等随电子束系统工作条件的变化。结果表明:微波输入功率越高、引出电压越高,引出电子束流强越大;工作气压对电子束流强的影响较复杂,随气压增加呈现出先降低后升高的特点;在7×10−4Pa 的极低气压下电子束流强可达75mA,引出电压9kV;能量利用率可达0.6;调整聚焦线圈的驱动电流,电子束的束斑直径从20mm 减小到13mm,电子束流强未有明显变化。  相似文献   

10.
为了刻蚀出图形完整、侧壁陡直、失真度小的α:CH薄膜微器件,研究了有铝和无铝掩膜、气体流量比、工作气压对刻蚀速率的影响,并对纯氧等离子体刻蚀稳定性进行了研究。研究结果表明:在相同条件下,刻蚀速率随刻蚀时间变化不大;a:CH薄膜上有铝和无铝掩膜时,刻蚀速率相同;流量一定时,刻蚀速率随氩气和氧气体积比的增大而降低,当用纯氩气时,几乎没刻蚀作用;刻蚀速率随工作气压的增大而降低。实验中,得到最佳刻蚀条件是:纯氧气,流量4 mL·s-1,工作气压9.9×10-2 Pa,微波源电流80 mA,偏压-90 V。  相似文献   

11.
A pulse technique has been presented for generating a complete Langmuir probe characteristic curve in a short time interval which can be varied from 1 sec to 1 millisec. The method has been applied successfully to different plasma systems of our laboratory. Several examples have been given for indicating the type of diagnostic studies being carried out with this pulsed probe.  相似文献   

12.
Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.  相似文献   

13.
Ion current density measurements were made in an electron cyclotron resonance (ECR) plasma reactor for both argon and oxygen discharges. Spatial changes in the ion current density were also recorded across the reactor diameter for changes in pressure and power. These measurements revealed a minimum in the ion current density on the reactor axis. This observation has been explained as a consequence of the shape of the ECR region, which, in turn, is dependent on the mode of coupling. Current density measurements were made as a function of reactor pressure and microwave power for two different axial locations in the system. A Langmuir probe was also used at these two locations to measure the electron temperature as a function of these process conditions. It was observed that the ion current density and/or plasma density measured downstream from the ECR zone, increased significantly in the low-pressure/high-microwave power region. Results from this region of the operating parameter space have not previously been reported. Further existing models do not predict this observed increase in plasma density or ion current density. It has been proposed that a rarefication of the gas in the ECR region, as a result of gas heating, has acted to increase the outward diffusion of electrons from the ECR zone and, thus, has increased the ambipolar diffusion of ions to the downstream location. This proposal has been partially validated by experimental results in which the ion energy was measured as a function of reactor pressure and gas flow rate. The shape of the oxygen parameter space map differs significantly from that for Ar. The principal reasons for these changes are a number of different inelastic electron scattering mechanisms which effect the transport electrons out of the ECR zone and through ambipolar diffusion also the transport of ions. The second factor is the production of negative ionic species which varies with reactor pressure and, thus, Te  相似文献   

14.
Langmuir probe measurements of electron temperature in a plasma in the limiter shadow of a tokamak are presented together with a method of probe data analysis which takes into account the influence of the ion current vs voltage dependence in the determination of electron temperature, The method is based on the transformation of a single into a double probe characteristic. Values of the electron temperature calculated using this method are compared with the values estimated from single probe characteristic data.  相似文献   

15.
王锋  吴卫东  蒋晓东  唐永建 《物理学报》2012,61(2):24206-024206
本工作采用电子回旋共振(ECR)低压等离子体刻蚀技术, 刻蚀非晶熔石英表面. Ar/CF4为反应气体刻蚀后再经O等离子体钝化, 非晶熔石英表面出现晶化现象. 晶化层约几百纳米厚. Ar/CF4在ECR的电磁场作用下产生F离子与C离子, F离子使熔石英表面的Si-O共价键断裂, 并释放出O离子. C离子与O离子迅速键合生成CO2, 而被断键的Si原子与四个F原子键合生成气态SiF4. 熔石英原始表面被去除的同时, 在新的表面留下大量不饱和Si原子. 不饱和Si原子在高温条件下被O等离子钝化, 形成结晶态α 方石英.  相似文献   

16.
Electron cyclotron plasma reactor are prone to instabilities in specific input power [3–7] region (150–450 watts). In this region power absorption by gas molecules in the cavity is very poor and enhanced input power gets reflected substantially without increasing ion density. There are abrupt changes in plasma characteristics when input power was decreased from maximum to minimum, it was observed that reflected power changed from <2% to ∼50%. Minimum two jumps in reflected power were noticed in this specific power region and these appear to be highly sensitive to three stub tuner position in the waveguide for this particular input power zone. Unstable plasma region of this source is found to be dependent upon the magnetic field strength. Some changes in reflected power are also noticed with pressure, flow and bias and they are random in nature.  相似文献   

17.
A simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations  相似文献   

18.
陈卓  何威  蒲以康 《物理学报》2005,54(5):2153-2157
测量了电子回旋共振(ECR)氩等离子体中Ar的1s5亚稳态粒子数密度,在气压 为02—0 8 Pa、功率为500—700W的范围内,利用吸收光谱法测量了Ar原子8115 nm谱线的吸收强 度,得到1s5亚稳态粒子数密度为1×1015—4×1015 m -3.本文综合考 虑基态和1s5亚稳态粒子的激发对Ar发射谱线强度的贡献后,用两条发射谱线强 度之比得 到电子温度.结果表明,计入了1s5亚稳态激发的贡献后,所得到的电子温度与 只考虑基态的贡献得到的电子温度相比存在较大的差别. 关键词: 光谱法 亚稳态粒子数密度 电子温度 ECR等离子体源  相似文献   

19.
Conclusion In the present report an attempt has been made to use the second derivative method for measurements of the electron distribution function in flowing afterglow plasma. It has been shown that using the cross-correlation technique, this method seems to be a useful tool for flowing afterglow plasma investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号