首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of inorganic salts (CaCl2, MgCl2, NaCl, NaI and NaSCN) on the aggregation behavior of a synthesized polyether with seven poly (ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide) (PEO-PPO-PEO) arms attached to a tetraethylenepentamine core (simplified AE73) at air/water and n-heptane/water interfaces has been investigated by interfacial tension and oscillating bubble methods. The additions of NaCl, CaCl2, and MgCl2 may facilitate the micellization of AE73 and increase its maximum interfacial excess concentration (Γmax) due to the “salting out” effect, while NaSCN induces opposite effect and NaI exerts little influence. The adsorption kinetics of AE73 is controlled not only by the diffusion between the bulk solution and the interfacial layer but also by the energetic and steric barriers generated by the already adsorbed molecules. The adsorption relaxation time of AE73 is reduced with the addition of salts and this phenomenon is more prominent at the n-heptane/water interface. The “salting in” ions decrease the dilational modulus of AE73 while the “salting out” ions induce an opposite effect. The mechanisms of the interaction between inorganic ions and the polyether were discussed; the difference in aggregation behavior between linear and branched block polyethers were also compared.  相似文献   

3.
The adsorption of Suwannee River fulvic acid (SRFA) and Pahokee peat humic acid (PPHA) at the boehmite (gamma-AlOOH)/water interface and the impact of SRFA on boehmite dissolution have been examined over a wide range of solution pH conditions (pH 2-12), SRFA surface coverages (Gamma(SRFA), total SRFA binding site concentration normalized by the boehmite surface area) of 0.0-5.33 micromol m(-2), and PPHA surface coverages (Gamma(PPHA), PPHA binding site concentration normalized by boehmite surface area) of 0.0-4.0 micromol m(-2), using macroscopic adsorption and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. At relatively high SRFA surface coverages (Gamma(SRFA) = 5.33 micromol m(-2)), in situ ATR-FTIR spectral features of adsorbed SRFA are very similar to those measured for SRFA in solution at approximately 1-3 pH units higher. At sub-monolayer surface coverages (Gamma(SRFA) = 1.20 and 2.20 micromol m(-2)), several new peaks and enhancements of the intensities of a number of existing peaks are observed. The latter spectral changes arise from several nonorganic extrinsic species (i.e., adsorbed carbonate and water, for alkaline solution conditions), partially protonated SRFA carboxyl functional groups (near-neutral pH conditions), and small quantities of inner-spherically adsorbed SRFA carboxyl groups and/or Al(III)-SRFA complexes (for acidic conditions). The spectra of PPHA adsorbed at boehmite/water interfaces also showed changes generally consistent with our observations for SRFA sorbed on boehmite. These observations confirm that SRFA and PPHA are predominantly adsorbed at the boehmite/water interface in an outer-sphere fashion, with minor inner-sphere adsorption complexes being formed only under quite acidic conditions. They also suggest that the positively charged boehmite/water interface stabilizes SRFA and PPHA carboxyl functional groups against protonation at lower pH. Measurements of the concentration of dissolved Al(III) ions in the absence and presence of SRFA showed that the boehmite dissolution process is clearly inhibited by the adsorption of SRFA, which is consistent with previous observations that outer-spherically adsorbed organic anions inhibit Al-(oxyhydr)oxide dissolution.  相似文献   

4.
The rates of electron transfer (ET) reactions at the water/ionic liquid (IL) interface have been measured for the first time using scanning electrochemical microscopy. The standard bimolecular rate constant of the interfacial ET between ferrocene dissolved in 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and aqueous ferricyanide (0.4 M-1 cm s-1) was found to be approximately 30 times higher than the corresponding rate constant measured at the water/1,2-dichloroethane interface. The driving force dependence of the ET rate was investigated over a wide range of the interfacial potential drop values (>200 mV). The observed Butler-Volmer-type dependence is discussed in terms of the interfacial model. The ET was also probed at the interface between aqueous solution and the mixture of the IL and 1,2-dichloroethane. The mole fractions in this mixture were varied systematically to investigate the transition from the water/organic to the water/IL interface. The observed decrease in the rate constant with increasing mole fraction of 1,2-dichloroethane is in contrast with the previously reported direct correlation between the electrochemical rate constant and the diffusion coefficient of redox species in solution.  相似文献   

5.
The effect of solvents on the reduction of oxygen was investigated by pulse voltammetry. The established differences in the effect of the investigated solvents on certain stages of the reduction of oxygen are determined to a significant degree by their concentration in the system. Suggestions about the mechanism of the toxic action of the solvents in biosystems are made. Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1 Murmanskaya ul., Kiev-94. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 34, No. 1, pp. 11–13, January–February, 1998.  相似文献   

6.
The regulation of spontaneous waves at water/oil interfaces was investigated, focusing on effects of materials and sizes of containers. Trimethylstearylammonium chloride was dissolved in an aqueous phase. Nitrobenzene with potassium iodide and iodine was used as an organic phase. Rotation of interfacial waves with almost triangular shape was observed only in containers made of glass. The nature of interfacial waves is sensitive to container size. There was no interfacial wave in PFA (Teflon) containers. However, when a glass plate was soaked vertically to the interface, oscillation of contact angles of water/oil interfaces to glass plates was observed. The oscillation generated wave propagation along the plate. Dynamic interfacial tension was measured by Wilhelmy method and the pendant drop technique. Results with the Wilhelmy method in small glass containers exhibited spontaneous oscillation. However, oscillations in dynamic interfacial tension were not observed for other cases, i.e., the Wilhelmy method for large glass containers, for PFA containers, and for the pendant drop technique. It was concluded that all nonlinear behavior such as wave generation and apparent tension oscillation could be attributed to the effect of the sidewalls of container on the adsorption/desorption kinetics of the surfactant. We propose a possible scenario which can explain all of the qualitative features of the present experimental findings.  相似文献   

7.
The effects of the adsorption of pyromellitate, an analogue for natural organic matter, on the dissolution behavior of corundum (alpha-Al2O3) have been examined over a wide range of pyromellitate concentrations (0-2.5 mM) and pH conditions (2-10). The adsorption modes of pyromellitate on corundum have first been examined using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and are shown to be dominated by a fully deprotonated, outer-sphere pyromellitate species ([triple bond]AlOH2+. . .Pyr4-) at pH >/= 5.0. At lower pH conditions, however, an additional protonated outer-sphere species ([triple bond]AlOH2+. . .H2Pyr2-) and an inner-sphere species are also evident. In accordance with the ATR-FTIR findings, modeling of macroscopic pyromellitate adsorption data using an extended constant capacitance treatment was possible using two outer-sphere ([triple bond]AlOH2+. . .Pyr4- and [triple bond]AlOH2+. . .H2Pyr2-) and one inner-sphere ([triple bond]AlPyr3-) adsorbed pyromellitate species. The presence of adsorbed pyromellitate strongly inhibited the dissolution of corundum under acidic (pH < 5) conditions, consistent with a mechanism previously proposed by Johnson et al. whereby outer-spherically adsorbed Pyr4- species sterically protect dissolution-active surface sites from attack by dissolution-promoting species such as protons. A reduction in the protolytic dissolution rate of corundum results. A reference Suwannee River fulvic acid, which also adsorbs to aluminum (oxyhydr)oxide surfaces in a predominantly outer-sphere manner, was similarly shown to strongly inhibit the dissolution of corundum at pH = 3.  相似文献   

8.
The effects of the adsorption modes of several low molecular weight (LMW) organic anions (maleate, oxalate, and citrate) on the colloidal stability of corundum-water suspensions have been examined using electrokinetic and shear yield stress (tau(y)) measurements over a broad range of pH conditions and LMW organic anion concentrations. Consistent with previous studies, increasing concentrations of maleate, oxalate, and citrate progressively shift the electrokinetic isoelectric point and pH of the maximum shear yield stress (tau(y,max)) to more acidic conditions. Due to its predominant electrostatic driving force for adsorption, outer-spherically adsorbed maleate possesses a very limited ability to charge reverse the corundum-water interface or bind to the negatively charged corundum surface. By contrast, inner-spherically adsorbed oxalate and citrate can significantly charge reverse the corundum-water interface, with the extent of charge reversal being related to the relative binding strengths of the oxalate and citrate anions. Adsorbed maleate, oxalate, and citrate generate steric barriers to interparticle approach, leading to substantial reductions in the magnitude of tau(y,max) at low to intermediate concentrations of those LMW anions. At the highest anion concentrations investigated, however, increases in tau(y,max) are observed, and can be attributed to the formation of bridging Al(III)-organic surface precipitates, as suggested by in situ attenuated total reflectance Fourier transform infrared spectroscopic measurements of corundum-oxalate suspensions at high oxalate concentrations. The extent of precipitate formation is greatest for the corundum-oxalate system due to the strong dissolution-enhancing properties of the inner-spherically adsorbed oxalate anion (i.e., its ability to generate enhanced concentrations of dissolved Al(III) which can then participate in precipitate formation). The effects of the LMW organic anion adsorption modes on both the forms of the measured tau(y) versus pH data, and the ability to quantitatively compare tau(y) and zeta potential data measured at different corundum concentrations, are also discussed.  相似文献   

9.
10.
Phase transition of water confined in nanospaces with charged inner-surfaces was investigated by vibrational spectroscopy. Aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles give a series of spherical nanospaces with controlled inner-radius (Rw) with nanometer-scale precision. Successive spectroscopic measurements of the confined water with decreasing temperature revealed that the water freezes to metastable cubic ice (Ic) coexisting with super-cooled water or unstable amorphous ice at the Rw ranging from 1.0 to 2.0 nm. When Rw exceeded 2.0 nm, stable hexagonal ice (Ih) dominated. The drastic change of the dominant ice structure with the increase of 1 nm in Rw shows that the thickness of water layers affected by the inner surface can be estimated to be ~1 nm, where three or four layers of water hydrated to the surface. It is worth noting that the clear phase transition behavior of the confined water vanishes at Rw = 1.2 nm and that the gradual formation of Ic and coexistence of super-cooled water or glassy state of water are detected. The range of the effective interaction between interfacial water and the charged inner surfaces and the mechanism of the extremely slow phase transition were also discussed.  相似文献   

11.
Spreading of a drop of an emulsion made with milk proteins on air/water interfaces was studied. From an unheated emulsion, all oil molecules could spread onto the air/water interface, indicating that the protein layers around the oil globules in the emulsion droplet were not coherent enough to withstand the forces involved in spreading. Heat treatment (90 °C) of emulsions made with whey protein concentrate (WPC) or skim milk powder reduced the spreadability, probably because polymerisation of whey protein at the oil/water interface increased the coherence of the protein layer. Heat treatment of emulsions made with WPC and monoglycerides did not reduce spreadability, presumably because the presence of the monoglycerides at the oil/water interface prevented a substantial increase of coherence of the protein layer. Heat treatment of caseinate-stabilised emulsions had no effect on the spreadability. If proteins were already present at the air/water interface, oil did not spread if the surface tension (γ) was <60 mN/m. We introduced a new method to measure the rate at which oil molecules spread from the oil globules in the emulsion droplet by monitoring changes in γ at various positions in a ‘trough’. The spreading rates observed for the various systems agree very well with the values predicted by the theory. Spreading from oil globules in a drop of emulsion was faster than spreading from a single oil drop, possibly due to the greater surface tension gradient between the oil globule and the air/water interface or to the increased oil surface area. Heat treatment of an emulsion made with WPC did not affect the spreading rate. The method was not suitable for measuring the spreading rate at interfaces where surface active material is already present, because changes in γ then were caused by compression of the interfacial layer rather than by the spreading oil.  相似文献   

12.
Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.  相似文献   

13.
The effect of water and several organic solvents on the density, viscosity, and conductivity of ionic liquids (ILs) 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-n-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-n-butyl-3-methylimidazolium trifluoroacetate ([bmim][CF3CO2]) was studied at 298.15 K in wide composition ranges. The density, viscosity, and conductivity of the three neat ILs were also determined at various temperatures. Upon the basis of the molar conductivity of the mixtures and that of the neat ILs of the same viscosity, the degree of dissociation of ILs in the solutions was investigated. It can be deduced that the organic solvents enhance the ionic association of the ILs, the effect depending on the solvent dielectric constant, while water promotes dissociation significantly due to its high dielectric constant and its ability to form strong hydrogen bonds with the anions of the ILs.  相似文献   

14.
A study has been carried out of the adsorption of benzoic acid from cyclohexane solution onto the hydrophilic surface of calcite.

We determined initially the chemical and mineral composition of the solid, its specific surface area and its granulometry. This was followed by the determination of the enthalpies of immersion of calcite in different solvents. These thermodynamic properties gave information on the energetics of calcite—solvent interactions. In this way, we could construct a scale of affinities of the different organic molecules and water for the calcite surface. It was noted that the enthalpies were higher in unsaturated than in saturated organic solvents, and higher in water than in the organic solvents.

The adsorption isotherms and the differential molar enthalpies of displacement were determined in the presence and the absence of water. The role played by water in the adsorption of polar organic molecules from the oil phase has not been clearly explained previously. In this paper, we indicate how the presence of water can modify the adsorption of aromatic compounds on the surface of calcite. As regards the adsorption isotherms, the presence of water essentially increases the amount of adsorption. The results of the calorimetric studies were found to be surprising; we observed that the differential molar enthalpies of displacement were endothermic.

Similar experiments were carried out with dolomite and n-heptane solution and the results compared with those obtained with calcite and cyclohexane, leading to the formulation of a general model concerning the adsorption of small polar organic molecules from organic solvents onto the surfaces of the carbonates.  相似文献   


15.
Optical waveguide spectroscopy and atomic force microscopy (AFM) have been used to characterize the supramolecular architectures of acridine orange (AO) dye self-assembled at a mica/aqueous solution interface. Under the saturated adsorption conditions, optical waveguide spectroscopy revealed that the dye formed H-type aggregates at the interface. In situ AFM visualized interesting morphology of the dye aggregates showing nanosized meandering stripes with the width of approximately 1.5 nm (or brightness periodicity of approximately 3 nm). Electrostatic adsorption of the dye cations onto a mica surface as well as the intermolecular pi-pi stacking brought about the ordered nanostructures. We propose an interfacial aggregation model that shows a meandering staircase structure with the intermolecular slip angle of 60 degrees. According to the model, the AO molecule occupies a surface area of about 1.0 nm2.  相似文献   

16.
The adsorption of oxalate on a model aluminum oxide, corundum (alpha-Al2O3), has been examined over a broad range of oxalate concentrations (0.125-25.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurements indicate that at low to intermediate concentrations ([oxalate] < or = 2.50 mM), oxalate adsorbs to corundum predominantly as a bidentate, mononuclear, inner-sphere complex involving both carboxyl groups. Significant contributions from outer-spherically bound oxalate and aqueous Ox(2-) are additionally observed at higher oxalate concentrations. Consistent with the ATR-FTIR findings, macroscopic adsorption data measured for oxalate concentrations of 0.125-2.50 mM can be generally well modeled with a single bidentate, inner-sphere oxalate complex using the charge distribution multisite complexation (CD-MUSIC) model. However, at intermediate oxalate concentrations (0.50 and 1.25 mM) and pH <5, the extent of oxalate adsorption measured experimentally is found to fall significantly below that predicted by CD-MUSIC simulations. The latter finding is interpreted in terms of competition for oxalate from dissolved Al(III), the formation of which is promoted by the dissolution-enhancing properties of the adsorbed oxalate anion. In accordance with this expectation, increasing concentrations of dissolved Al(III) in solution are found to significantly decrease the extent of oxalate adsorption on corundum under acidic pH conditions, presumably through promoting the formation of Al(III)-oxalate complexes with reduced affinities for the corundum surface compared with the uncomplexed oxalate anion.  相似文献   

17.
The swelling behavior of polyelectrolyte gels based on poly(diallyldimethylammonium chloride) (copolymers of diallyldimethylammonium chloride and acrylamide with the variable composition) and poly(methacrylic acid, sodium salt) in the presence of organic water soluble dyes (alizarin, naphthol blue black, rhodamine) was studied. The collapse of the polyelectrolyte gels in the presence of oppositely charged dyes together with the effective absorption of dyes was observed. The shrinking degree and the dye absorption by the gel depend on the charges of the polymer network and the dye, and also on the dye concentration. Stability of the gel–dye complexes in a salt solution of NaCl and Al2(SO4)3 was studied. It was shown that the complex stability in the salt solution depends on the charge density of the polymer chains forming the gel. The increase of charge density of polymer generally leads to the enhancement of the complex stability. For the systems with the fraction of charged poly(diallyldimethylammonium chloride) monomer units above 0.5 the release of alizarin to the external solution of Al2(SO4)3 reservoir is practically completely suppressed. The obtained results show that oppositely charged dyes are generally from stable complexes with polyelectrolyte gels. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1209–1217, 1999  相似文献   

18.
The stability of C(60) fullerene particles in water affects its mobility, bioavailability, and toxicity to organisms. Natural organic matters (NOMs) have pronounced effects on the aggregation behavior of C(60) fullerene. This study was to examine the effects of NOM structural properties on the aggregation behavior of fullerene water suspension (FWS). Fulvic acid (FA), tannic acid (TA), and two structurally different humic acids (HA1 and HA7) were studied. HA1 and HA7 were sequentially extracted HAs, where HA7 was more hydrophobic than HA1 and had a higher molecular weight. Aggregation was induced by addition of varying amounts of Ca(2+) to the FWS with 2 mg/L of each NOM. The absolute value of zeta potential |ζ| of pure FWS increased after addition of any type of NOM. Addition of Ca(2+) to the FWS+NOM system decreased |ζ| of fullerene almost uniformly for all types of NOM. FWS critical coagulation concentration (CCC) was equal to 14.5, 6.5, 5.4, and 3.7 mM Ca(2+) for HA7, HA1, FA, and TA, respectively. The order of increasing CCCs was positively correlated to the NOMs molecular weight and negatively to their polarity. A nearly constant ζ for FWS+NOM system at a wide range of Ca(2+) concentrations suggested the steric stability rather than electrostatic one. This study highlighted the role of NOM in the fate of manufactured nanoparticles in the environment and linked the structural properties of NOM to their interaction with manufactured nanoparticles.  相似文献   

19.
Atomistic simulations are used to characterize the molecular dynamics (MD) of alkyl chains with different functionalizations in different water/acetonitrile mixtures (80/20 and 50/50). Starting from fully equilibrated solvent systems (flat density profile for both components), microheterogeneous structuring of the solvent in the chromatographic system is found for both mixtures. Depending on the functionalization of the alkyl chain (nitrile, amide, nitro, phenyl), differences in the density profiles of the two solvents (water/acetonitrile), the effective width of the stationary phase and the solvent gradients in the overlap region are observed. The solvent mixture (mobile phase) in RPLC is a liquid which is directly involved in the physical process and must be included explicitly. Far from the surface, the solvent displays bulk properties; closer to it the mixed solvent partitions due to the presence of the stationary phase. This creates a gradient in solvent strength perpendicular to the surface which influences the motions of the analyte. The surface is found to define the amount of water that can bind to it and defines its hydrophilic character. Proposals from the literature, such as the existence of persistent water filaments extending from the functionalized silica layer towards the bulk solvent, are discussed. Simulations of acridine orange near a -NH(2)- and -phenol-functionalized surface highlight the different dynamical behaviour (insertion vs. adsorption) of an analyte depending on the functionalization of the surface.  相似文献   

20.
Secondary ion mass spectrometry (SIMS) relies on the fact that surface particles ejected from a solid surface are ionized under ion bombardment. By comparing the signal of molecular secondary ions desorbed from an organic film with that of the corresponding sputtered neutral precursor molecules, we investigate the variation of the molecular ionization probability when depth profiling through the film to the substrate interface. As a result, we find notable variations of the ionization probability both at the original surface and in the interface region, leading to a strong distortion of the measured SIMS depth profile. The experiments show that the effect can act in two ways, leading either to an apparent broadening or to an artificial sharpening of the observed film‐substrate transition. As a consequence, we conclude that care must be taken when assessing interface location, width, or depth resolution from a molecular SIMS depth profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号