首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the method of averaging for conservative oscillators which may be strongly nonlinear, under small perturbations including delayed and/or fractional derivative terms. The unperturbed systems studied here include a harmonic oscillator, a strongly nonlinear oscillator with a cubic nonlinearity, as well as one with a nonanalytic nonlinearity. For the latter two cases, we use an approximate realization of the asymptotic method of averaging, based on harmonic balance. The averaged dynamics closely match the full numerical solutions in all cases, verifying the validity of the averaging procedure as well as the harmonic balance approximations therein. Moreover, interesting dynamics is uncovered in the strongly nonlinear case with small delayed terms, where arbitrarily many stable and unstable limit cycles can coexist, and infinitely many simultaneous saddle-node bifurcations can occur.  相似文献   

2.
Chatterjee  A. 《Nonlinear dynamics》2003,32(4):323-343
Averaging is a classical asymptotic technique commonly used to studyweakly nonlinear oscillations via small perturbations of the harmonicoscillator. If the unperturbed oscillator is autonomous and stronglynonlinear, but with a two-parameter family of periodic solutions, thenaveraging is allowed in principle but typically not considered feasibleunless (a) the required family of unperturbed periodic solutions can befound in closed form, and (b) the averaging integrals can be found inclosed form. Often, the foregoing requirements cannot be met. Here, itis shown how both these difficulties can be bypassed using the classicalbut heuristic approximation method of harmonic balance, to obtain approximate realizations of the asymptotic analytical technique. Theadvantages of the present approach are that (a) closed form solutions tothe unperturbed problem are not needed, and (b) the heuristic andasymptotic parts of the calculation are kept conceptually distinct, withscope for refining the former, while preserving the asymptotic nature ofthe latter. Several examples are provided, including oscillators with astrong cubic nonlinearity, velocity dependent nonlinear terms (includinga strongly nonconservative system), a nondifferentiable characteristic,and a strongly nonlinear but homogeneous function of order 1; dynamicphenomena investigated include damped oscillations, limit cycles, forcedoscillations near resonance, and subharmonic entrainment. Goodapproximations are obtained in each case.  相似文献   

3.
Das  S. L.  Chatterjee  A. 《Nonlinear dynamics》2003,32(2):161-186
The method of multiple scales and the related method of averaging are commonly used tostudy slowly modulated oscillations. If the system of interest is a slightlyperturbed harmonic oscillator, then these techniques can be applied easily. If the unperturbed system is strongly nonlinear (though possiblyconservative), then these methods can run into difficulties due to the impossibilityof carrying out required analytical operations in closed form.In this paper, we abandon the requirement of closed form analyticaltreatment at all stages. Instead, Galerkin projections are used toobtain approximate realizations of the method of multiple scales. Thispaper adapts recent work using similar ideas for approximaterealizations of the method of averaging. A key contribution of thepresent work is in the systematic identification and removal of secularterms in the general nonlinear case, a procedure that is more difficultthan for the perturbed harmonic oscillator case, and that is unnecessaryfor averaging.A strength of the present work is that the heuristics (Galerkin)and asymptotics (multiple scales) are kept distinct,leaving room for systematic refinement of the formerwithout compromising the asymptotic features of the latter.  相似文献   

4.
5.
We prove that the iterates of certain periodic nonexpansive operators in l1 uniformly converge to zero in l norm. As a by-product we show that, for any solution x(t) of the equation x(t)= –sign(x(t-1))f(x()), t0, x|[–1,0]C[–1,0] where f:(–1, 1) is locally Lipschitz, the number of zeros of x(t) on any unit interval becomes finite after a period of time, with the single exception of the case f(0)=0 and x(t)0.  相似文献   

6.
A nonlinear system identification methodology based on the principle of harmonic balance and bifurcation theory techniques like center manifold analysis and normal form reduction, is presented for multi-degree-of-freedom systems. The methodology, called Bifurcation Theory System IDentification, (BiTSID), is a general procedure for any nonlinear system that exhibits periodic limit cycle response and can be used to capture the bifurcation behavior of the nonlinear systems. The BiTSID methodology is demonstrated on an experimental system single-degree-of-freedom system that deals with self-excited motions of a fluid-structure system with a sub-critical Hopf bifurcation. It is shown that BiTSID performs excellently in capturing the stable and unstable limit cycles within the experimental regime. Its performance outside the experimental regime is also studied. The application of BiTSID to experimental multi-degree-of-freedom systems has also been very successful. However in this study only the results of the single-degree-of-freedom system are presented.  相似文献   

7.
A new method of uniform expansions of periodic solutions to ordinary differential equations with arbitrary odd polynomial non-linearity is constructed to study quasi-harmonic processes in non-linear dynamical systems, in particular when a small parameter of non-linearity is absent. The main idea of the method consists in using the ratio of the amplitudes of higher harmonics to the amplitude of the first harmonic of a periodic solution as a small formal parameter. In the particular case of a single-periodic solution, this small parameter appears due to descending the amplitudes of harmonics monotonically with increasing their number. Due to uniform expansion the amplitudes of higher harmonics turn out to be rational and fractional functions in the amplitude of the first harmonic and the frequency of oscillations. We show that the method of uniform expansions is an effective tool for obtaining convergent expansions of periodic solutions in explicit form all over the domain, where periodic solutions exist, independently of the magnitude of non-linearity. In each subsequent approximation, one more higher harmonic is taken into account, with all the other harmonics being corrected. We demonstrate the effectiveness of the method on the examples of the harmonically forced Duffing oscillator; free vibrations of the oscillator with fifth-power non-linearity and mathematical pendulum.  相似文献   

8.
This paper investigates multiple modeling choices for analyzing the rich and complex dynamics of high-speed milling processes. Various models are introduced to capture the effects of asymmetric structural modes and the influence of nonlinear regeneration in a discontinuous cutting force model. Stability is determined from the development of a dynamic map for the resulting variational system. The general case of asymmetric structural elements is investigated with a fixed frame and rotating frame model to show differences in the predicted unstable regions due to parametric excitation. Analytical and numerical investigations are confirmed through a series of experimental cutting tests. The principal results are additional unstable regions, hysteresis in the bifurcation diagrams, and the presence of coexisting periodic and quasiperiodic attractors which is confirmed through experimentation.  相似文献   

9.
The periodic motions of the fractional order and/or delayed nonlinear systems are investigated in the frequency domain using a harmonic balance method with the analytical gradients of the nonlinear quality constraints and the sensitivity information of the Fourier coefficients can also obtained. The properties of fractional order derivatives and trigonometric functions are utilized to construct the fractional order derivatives, delayed and product operational matrices. The operational matrices are used to derive the analytical formulae of nonlinear systems of algebraic equations. The stability of periodic solutions for the delayed nonlinear systems is identified by an eigenvalue analysis of quasi-polynomials characteristic equations. Sensitivity analysis is performed to study the influence of the structural parameters on the system responses. Finally, three numerical examples are presented to illustrate the validity and feasibility of the developed method. It is concluded that the proposed methodology has the potential to facilitate highly efficient optimization, as well as sensitivity and uncertainty analysis of nonlinear systems with fractional derivatives and/or time delayed.  相似文献   

10.
神经网络时滞系统非共振双Hopf分岔及其广义同步   总被引:2,自引:0,他引:2  
裴利军  徐鉴 《力学季刊》2005,26(2):269-275
本文建立了具有自连接和抑制-兴奋型他连接的两个同性神经元模型。其中自连接是由于兴奋型的突触产生,而他连接则分别对应于两神经元兴奋、抑制型的突触。发现如果有兴奋型自连接就会有双Hopf分岔,而没有时滞自连接时双Hopf分岔就会消失,因此自连接引起了双Hopf分岔。作为一个例子,通过变动连接中的时滞和他连接中的比重,1/√2双Hopf分岔得到了详细研究。通过中心流形约化,分岔点邻域内各种不同的动力学行为得到了分类,并以解析形式表出。神经元活动的分岔路径得以表明。从得到的解析近似解可以发现,本文所研究的具有兴奋一抑制型他连接的两相同神经元的节律不能完全同步而只能广义同步。时滞也可以使其节律消失,两神经元变为非活动的。这些结果在控制神经网络关联记忆和设计人工神经网络方面有着潜在的应用。  相似文献   

11.
This paper develops two related fractional trigonometries based on the multi-valued fractional generalization of the exponential function, the R-function. The trigonometries contain the traditional trigonometric functions as proper subsets. Also developed are relationships between the R-function and the new fractional trigonometric functions. Laplace transforms are derived for the new functions and are used to generate solution sets for various classes of fractional differential equations. Because of the fractional character of the R-function, several new trigonometric functions are required to augment the traditional sine, cosine, etc. functions. Fractional generalizations of the Euler equation are derived. As a result of the fractional trigonometry a new set of phase plane functions, the Spiral functions, that contain the circular functions as a subset, is identified. These Spiral functions display many new symmetries.  相似文献   

12.
Liu  J. K.  Chan  H. C. 《Nonlinear dynamics》2000,23(3):259-270
This paper presents an investigation into the limit cycleoscillation phenomenon for a nonlinear aeroelasticsystem under unsteady aerodynamics. The system consists of a sweptbackwing section carrying a tip mass with one degree of freedom. Thejunction stiffness considered between the wing and the tip mass istrilinear. The method of harmonic balance, which can be very practicalin the study of nonlinear flutter, is used for the theoretical analysisof limit cycle oscillations. Stable, unstable and semi-stable limitcycles are predicted in the system for both cases of hardening andsoftening springs. Results found by numerical simulation provide theamplitudes of limit cycles. The experimental results in wind tunneltests agree well with the predictions obtained both theoretically andnumerically.  相似文献   

13.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

14.
傅景礼  郭玛丽 《力学季刊》2016,37(2):252-265
引入分数因子和分数增量,给出了分数阶微积分的定义和性质;基于分数阶导数的定义,证明了含有分数因子的等时变分与分数阶算子的交换关系;提出了分数阶完整保守和非保守系统的Hamilton原理;建立了分数阶完整保守系统和非保守系统的运动微分方程;得到了分数阶完整保守系统的循环积分;并利用分数阶循环积分导出分数阶罗兹方程.最后给出了两个例子.研究表明利用分数因子给出的分数阶微分方程是一个含有分数因子的通常的微分方程,那么分数阶系统运动微分方程的求解都可以采用通常微分方程的求解方法.  相似文献   

15.
The incremental harmonic balance method was extended to analyze the flutter of systems with multiple structural strong nonlinearities. The strongly nonlinear cubic plunging and pitching stiffness terms were considered in the flutter equations of two-dimensional airfoil. First, the equations were transferred into matrix form, then the vibration process was divided into the persistent incremental processes of vibration moments. And the expression of their solutions could be obtained by using a certain amplitude as control parameter in the harmonic balance process, and then the bifurcation, limit cycle flutter phenomena and the number of harmonic terms were analyzed. Finally, numerical results calculated by the Runge-Kutta method were given to verify the results obtained by the proposed procedure. It has been shown that the incremental harmonic method is effective and precise in the analysis of strongly nonlinear flutter with multiple structural nonlinearities.  相似文献   

16.
孙中奎  徐伟  杨晓丽  许勇 《力学学报》2005,37(5):667-672
提出了一种基于参数展开的新的同伦分析技术(PE-HAM):结合参数展 开技术和同伦理论将一非线性动力系统(不要求系统内含有小参数)的求解问题转化为一组 线性微分方程的求解问题,并将之运用到强非线性振动领域. 用该方法研究了强非线性 Duffing系统的响应问题,得到了一阶近似解. 作为特例讨论了保守Duffing系统和受谐和 激励的耗散Duffing系统的稳态响应问题. 数值模拟的结果,说明了新方法的有效性.  相似文献   

17.
Liu  Zhaoheng  Payre  Guy  Bourassa  Paul 《Nonlinear dynamics》2004,35(2):159-173
In this paper, linear stability and chaotic motion of a time-delayednonlinear vehicle system are studied. The stability is determined bycomputing the spectrum associated with a system of linear retardedfunctional differential equations, which reveals that a loss ofstability occurs following a Hopf bifurcation. Beyond the critical valuefor linear stability, the system exhibits limit cycle motions.Subharmonic, quasi-periodic and chaotic motions are observed for asystem excited by a periodic disturbance.  相似文献   

18.
We develop a singular perturbation technique to study the existence of periodic traveling wave solutions with large wave speed for a class of reaction-diffusion equations with time delay and non-local response. Unlike the classical singular perturbation method, our approach is based on a transformation of the differential equations to integral equations in a Banach space that reduces the singular perturbation problem to a regular perturbation problem. The periodic traveling wave solutions then are obtained by the use of Liapunov-Schmidt method and a generalized implicit function theorem. The general result obtained has been applied to a non-local reaction-diffusion equation derived from an age-structured population model with a logistic type of birth function.  相似文献   

19.
The paper presents a study on the validity of perturbation methods, suchas the method of multiple scales, the Lindstedt–Poincaré method and soon, in seeking for the periodic motions of the delayed dynamic systemsthrough an example of a Duffing oscillator with delayed velocityfeedback. An important observation in the paper is that the method ofmultiple scales, which has been widely used in nonlinear dynamics, worksonly for the approximate solutions of the first two orders, and givesrise to a paradox for the third-order approximate solutions of delaydifferential equations. The same problem appears when theLindstedt–Poincaré method is implemented to find the third-orderapproximation of periodic solutions for delay differential equations,though it is effective in seeking for any order approximation ofperiodic solutions for nonlinear ordinary differential equations. Apossible explanation to the paradox is given by the results obtained byusing the method of harmonic balance. The paper also indicates thatthese perturbation methods, despite of some shortcomings, are stilleffective in analyzing the dynamics of a delayed dynamic system sincethe approximate solutions of the first two orders already enable one togain an insight into the primary dynamics of the system.  相似文献   

20.
We consider a ring of identical elements with time delayed, nearest neighbour coupling. The individual elements are modelled by a scalar delay differential equation which includes linear decay and nonlinear delayed feedback. The linear stability of the trivial solution is completely analyzed and illustrated in the parameter space of the coupling strength and the coupling delay. Conditions for global stability of the trivial solution are also given. The bifurcation and stability of nontrivial synchronous solutions from the trivial solution is analyzed using a centre manifold construction.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号